University of Mumbai

<u>वेबसाईट</u> – mu.ac.in <u>इमिल</u> - आयडी - <u>dr.aams@fort.mu.ac.in</u> aams<u>3</u> a.mu.ac.in

विद्याविषयक प्राधिकरणे सभा आणि सेवा विभाग(ए.ए.एम.एस) रूम नं. १२८ एम.जी.रोड, फोर्ट, मुंबई - ४०० ०३२ टेलिफोन नं - ०२२ - ६८३२००३३

(नॅक पुनमूल्यांकनाद्वारे ३.६५ (सी.जी.पी.ए.) सह अ++ श्रेणी विद्यापीठ अनुदान आयोगाद्वारे श्रेणी १ विद्यापीठ वर्जा)

क.वि.प्रा.स.से./आयसीडी/२०२५-२६/३७

दिनांक : २७ मे, २०२५

परिपत्रक:-

सर्व प्राचार्य/संचालक, संलग्नित महाविद्यालये/संस्था, विद्यापीठ शैक्षणिक विभागांचे संचालक/ विभाग प्रमुख यांना कळविण्यात येते की, राष्ट्रीय शैक्षणिक धोरण २०२० च्या अमंलबजावणीच्या अनुषंगाने शैक्षणिक वर्ष २०२५-२६ पासून पदवी व पदव्युत्तर अभ्यासकम विद्यापरिषदेच्या दिनांक २८ मार्च २०२५ व २० मे, २०२५ च्या बैठकीमध्ये मंजूर झालेले सर्व अभ्यासकम मुंबई विद्यापीठाच्या www.mu.ac.in या संकेत स्थळावर NEP २०२० या टॅब वर उपलब्ध करण्यात आलेले आहेत.

प्रसाद कारंडे

मुंबई - ४०० ०३२ २७ मे, २०२५

क वि प्रा.स.से वि/आयसीडी/२०२५-२६/३७ दिनांक : २७ मे, २०२५ Desktop/ Pritam Loke/Marathi Circular/NEP Tab Circular

Cop	y forwarded for information and necessary action to :-
1	The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Dept)(AEM), <u>dr@eligi.mu.ac.in</u>
2	The Deputy Registrar, Result unit, Vidyanagari drresults@exam.mu.ac.in
3	The Deputy Registrar, Marks and Certificate Unit,. Vidyanagari dr.verification@mu.ac.in
4	The Deputy Registrar, Appointment Unit, Vidyanagari dr.appointment@exam.mu.ac.in
5	The Deputy Registrar, CAP Unit, Vidyanagari <u>cap.exam@mu.ac.in</u>
6	The Deputy Registrar, College Affiliations & Development Department (CAD), <u>deputyregistrar.uni@gmail.com</u>
7	The Deputy Registrar, PRO, Fort, (Publication Section), <u>Pro@mu.ac.in</u>
8	The Deputy Registrar, Executive Authorities Section (EA) <u>eau120@fort.mu.ac.in</u>
	He is requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to the above circular.
9	The Deputy Registrar, Research Administration & Promotion Cell (RAPC), <u>rapc@mu.ac.in</u>
10	The Deputy Registrar, Academic Appointments & Quality Assurance (AAQA) dy.registrar.tau.fort.mu.ac.in ar.tau@fort.mu.ac.in
11	The Deputy Registrar, College Teachers Approval Unit (CTA), concolsection@gmail.com
12	The Deputy Registrars, Finance & Accounts Section, fort draccounts@fort.mu.ac.in
13	The Deputy Registrar, Election Section, Fort drelection@election.mu.ac.in
14	The Assistant Registrar, Administrative Sub-Campus Thane, <u>thanesubcampus@mu.ac.in</u>
15	The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan, ar.seask@mu.ac.in
16	The Assistant Registrar, Ratnagiri Sub-centre, Ratnagiri, ratnagirisubcentar@gmail.com
17	The Director, Centre for Distance and Online Education (CDOE), Vidyanagari, <u>director@idol.mu.ac.in</u>
18	Director, Innovation, Incubation and Linkages, Dr. Sachin Laddha pinkumanno@gmail.com
19	Director, Department of Lifelong Learning and Extension (DLLE), dlleuniversityofmumbai@gmail.com

Cop	y for information :-
1	P.A to Hon'ble Vice-Chancellor,
	vice-chancellor@mu.ac.in
2	P.A to Pro-Vice-Chancellor
	pvc@fort.mu.ac.in
3	P.A to Registrar,
	registrar@fort.mu.ac.in
4	P.A to all Deans of all Faculties
5	P.A to Finance & Account Officers, (F & A.O),
	camu@accounts.mu.ac.in

To,

	Γ
1	The Chairman, Board of Deans
	<u>pvc@fort.mu.ac.in</u>
2	Faculty of Humanities,
	Offg. Dean
	1. Prof.Anil Singh
	Dranilsingh129@gmail.com
	Offg. Associate Dean
	2. Prof.Manisha Karne
	mkarne@economics.mu.ac.in
	3 Dr Suchitra Naik
	Naiksuchitra?7@gmail.com
	Faculty of Commerce & Management,
	Offg. Dean,
	1 Prin.Ravindra Bambardekar
	principal@model-college.edu.in
	Offg. Associate Dean
	2. Dr.Kavita Laghate
	kavitalaghate@jbims.mu.ac.in
	3. Dr.Ravikant Balkrishna Sangurde
	Ravikant.s.@somaiya.edu
	4. Prin.Kishori Bhagat
	kishoribhagat@rediffmail.com

	Faculty of Science & Technology
	Offg. Dean 1. Prof. Shivram Garje <u>ssgarje@chem.mu.ac.in</u>
	Offg. Associate Dean
	2. Dr. Madhav R. Rajwade Madhavr64@gmail.com
	3. Prin. Deven Shah <u>sir.deven@gmail.com</u>
	Faculty of Inter-Disciplinary Studies, Offg. Dean
	1.Dr. Anil K. Singh <u>aksingh@trcl.org.in</u>
	Offg. Associate Dean
	2.Prin.Chadrashekhar Ashok Chakradeo cachakradeo@gmail.com
	3. Dr. Kunal Ingle drkunalingle@gmail.com
3	Chairman, Board of Studies,
4	The Director, Board of Examinations and Evaluation, <u>dboee@exam.mu.ac.in</u>
5	The Director, Board of Students Development, dsd@mu.ac.in DSW direcotr@dsw.mu.ac.in
6	The Director, Department of Information & Communication Technology, director.dict@mu.ac.in

AC – 20/5/2025 Item No. – 6.35 (N)

As Per NEP 2020

University of Mumbai

Syllabus for Major Vertical – 1, 4, 5 & 6

Name of the Programme – B.E. (Mechanical Engineering)

Faculty of Engineering

Board of Studies in Mechanical Engineering

U.G. Second Year Programme	Exit Degree	U.G. Diploma in <u>Mechanical Engineering.</u>
Semester		III & IV
From the Academic Year		2025-26

University of Mumbai

(As per NEP 2020)

Sr.	Heading	Particulars
NO		
1	Title of program	B.E. (Mechanical Engineering)
	O:	
2	Exit Degree	U.G. Diploma in <u>Mechanical Engineering</u> .
3	Scheme of Examination	NEP
	R:	40% Internal 60% External, Semester End Examination Individual Passing in Internal and External Examination
4	Standards of Passing R:	40%
5	Credit Structure R. TEU-580C R. TEU-580D	Attached herewith
6	Semesters	Sem. III & IV
7	Program Academic Level	5.00
8	Pattern	Semester
9	Status	New
10	To be implemented from Academic Year	2025-26

Sd/-Dr. S. M. Khot BoS-Chairman-Mechanical Engineering Faculty of Technology Sd/-Dr. Deven Shah Associate Dean Faculty of Science & Technology Sd/-Prof. Shivram S. Garje Dean Faculty of Science & Technology

Preamble

To meet the challenge of ensuring excellence and NEP 2020 policy in engineering education, the issue of quality needs to be addressed, debated, and taken forward systematically. Accreditation is the principal means of quality assurance in higher education. The major emphasis of the accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of the University of Mumbai has taken the lead in incorporating the philosophy of NEP 2020 education in the process of curriculum development.

The second-year engineering course is a core training program to impart scientific and logical thinking training to learners in general, with a choice of course selection from the program core course, multidisciplinary minor, and vocational skill-enhanced course. Simultaneously, the objectives of NEP 2020 demand nurturing the core program and skills required for the Information Technology Branch of engineering in the learner. Keeping this in view, a pool of courses is offered in Core Courses covering fundamentals required to understand core and modern engineering practices and emerging trends in technology. Considering the shift in pedagogy and the convenience of a stress-free learning process, a choice-based subject pool is offered in the coursework under the heads of Information Technology in Engineering for open electives and multidisciplinary minor courses in the third and fourth semesters. Essentially, to give a glimpse of trends in the industry under vocational and enhanced skill practices, the pool is offered to nurture and develop creative skills in contemporary industrial practices. Criteria met in the structure is the opportunity for learners to choose the course of their interest in all disciplines.

Program Core Course Cover Information Technology core courses. Also, OE and MDM where a pool of subjects are given for selection. Considering the present scenario, diverse choices need to be made available to fulfill the expectation of a learner to aspire for a career in the field of current trends of Technology and interdisciplinary research. Ability enhancement can be achieved in Undergraduate training by giving an objective viewpoint to the learning process and transitioning a learner from a rote learner to a creative professional. for the purpose Design Thinking is introduced in the First Semester to orient a journey learner to become a skilled professional. Considering the NEP-2020 structure of award of Certificate & Diploma at multiple exit-point pools of Vocational skills is arranged for giving exposure to the current Industry practices.

The faculty resolved that course objectives and course outcomes are to be clearly defined for every course so that all faculty members in affiliated higher education institutes understand the depth and approach of the course to be taught, which will enhance the learner's learning process. NEP 2020 grading system enables a much-required shift in focus from teacher-centric to continuous-based learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation, which will enhance the quality of education. Credit assignment for courses is based on a 15-week teaching-learning process for NEP 2020, however, the content of courses is to be taught in 12-13 weeks, and the remaining 2-3 weeks are to be utilized for revision, tutorial, guest lectures, coverage of content beyond the syllabus, etc.

There was a concern that in the present system, the second-year syllabus must not be heavily loaded to the learner and it is of utmost importance that the learner entering into the second year of an engineering course should feel at ease by lowering the burden of syllabus and credits. This is necessary for a learner to get accustomed to the new environment of a college and to create a bond between the teacher and the learner. The present curriculum will be implemented for the Second Year of Engineering from the academic year 2054-26. Subsequently, this system will be carried forward for Third Year and Final Year Engineering in the academic years 2026-27, and 2027-28, respectively.

Sd/-Dr. S. M. Khot BoS-Chairman-Mechanical Engineering Faculty of Technology Sd/-Dr. Deven Shah Associate Dean Faculty of Science & Technology Sd/-Prof. Shivram S. Garje Dean Faculty of Science & Technology

Under Graduate Diploma in Engineering- Mechanical Engineering.

Credit Structure (Sem. III & IV)

Level	Semester	Maio)r	Minor	OF	VSC	AEC	OIT	Cum.	Degree/
		Mandatory	Electives		ŬĽ.	SEC (VSEC)	VEC, IKS	FP, CEP, CC, RP	Cr. / Sem.	Cum. Cr.
	111	2403111 2403112 2403113 2403114 2403115 2403116			OE:2		VEC: 2 HSL: 2	CEP: 2	22	
50	R. TEU-58	2404111		MDM:	OE:2	VSEC:2	VEC: 2		23	UG
5.0		2404112 2404113 2404114 2404115		4			EEM:2			Diploma 43
	Cum Cr.	25		4	4	2	2+2+2+2	2	45	

Exit option: Award of UG Diploma in Major and MDM with 90 credits and additional 4 credits core **one** theory subject with 3 credits and **one** lab with 1 credit from one third year from where they want to take Exit degree. Along with theory and practical course student must compulsory do internship for **one month or 160 hours** which internship is equal to 4 credits.

[Abbreviation - OE – Open Electives, VSC – Vocation Skill Course, SEC – Skill Enhancement Course, (VSEC), AEC – Ability Enhancement Course, VEC – Value Education Course, IKS – Indian Knowledge System, OJT – on Job Training, FP – Field Project, CEP – Continuing Education Program, CC – Co-Curricular, RP – Research Project]

Sem. - III

S.E. Mech. Scheme

Program Structure for Second Year of Mechanical Engineering UNIVERSITY OF MUMBAI (With Effect from 2025-2026)

SEMESTER III

Course Code	Course Description	Tea (C	aching Sch ontact Ho	ieme urs)	Credit Assigned				
		Theory	Practical	Tutorial	Theory	Tutorial	Practical	Total Credits	
2403111	Engineering Mathematics	2		1	2	1	-	3	
2403112	Strength of Materials	3	-		3			3	
2403113	Thermodynamics	3			3			3	
2403114	Material Science	3			3			3	
2403311	To be taken from the bucket provided by the University from other Faculty	2			2		_	2	
2403115	Material Testing Lab		2				1	1	
2403116	Working drawing- GD&T**		2				1	1	
2403611	Mini Project (group project)		4				2	2	
2403511	Entrepreneurship Development (Syllabus common to all Branches).		2*+2				2	2	
2403512	Environmental Science for Engineers (Syllabus common to all Branches).		2*+2		-		2	2	
	Total	13	16	01	13	01	08	22	

* Two hours of practical class to be conducted for full class as demo/discussion. Theory / Tutorial 1 credit for 1 hour and Practical 1 credit for 2 hours

Institute shall offer a course for Open Elective from Science/Commerce/Management stream bucket provided by the University of Mumbai.

#Institute shall offer a course for MDM from other Engineering Boards.

		Examination Scheme								
G	Course Description	Interna	l Assessn (IAT)	nent Test	T 10	End Sem. Exam Duration (Hrs)	Term Work (Tw)	Oral & Pract.		
Course Code		IAT-I	IAT-II	Total (IAT-I) + IAT-II)	End Sem. Exam Marks				Total	
2403111	Engineering Mathematics	20	20	40	60	2	25		125	
2403112	Strength of Materials	20	20	40	60	2			100	
2403113	Thermodynamics	20	20	40	60	2			100	
2403114	Material Science	20	20	40	60	2			100	
2403311	To be taken from the bucket provided by the University from other Faculty	20	20	40	60	2			100	
2403115	Material Testing Lab						25	25	50	
2403116	Working drawing- GD&T**						25	25	50	
2403611	Mini Project (group project)						50	25	75	
2403511	Entrepreneurship Development (Syllabus common to all Branches).						50		50	
2403512	Environmental Science for Engineers (Syllabus common to all Branches).						50		50	
	Total	100	100	200	300	10	225	125	800	

Program Structure for Second Year of Mechanical Engineering UNIVERSITY OF MUMBAI (With Effect from 2025-2026)

SEMESTER IV

Course Code	Course Description	Tea (C	aching Sch ontact Ho	neme ours)	Credit Assigned			
	,		Practical	Tutorial	Theory	Tutorial	Practical	Total Credits
2404111	Finite Element Analysis	3			2	1	-	3
2404112	Manufacturing Processes	3	-		3	-	-	3
2404113	Theory of Machines	3			3	_	_	3
2404211	Multidisciplinary minor	3	_		3	_	-	3
2404311	To be taken from the bucket provided by the University from other Faculty	2	_		2	_	_	2
2404114	Manufacturing Processes Lab	_	2	-	_	_	1	1
2404115	Theory of Machines Lab	_	2	-	—	_	1	1
2404212	Multidisciplinary minor	_	2	_	_	_	1	1
2404411	CAD Modeling	_	4	_	_	_	2	2
2404511	Business Model Development (Syllabus common to all Branches).	_	2*+2	_	_	_	2	2
2404512	Design Thinking (Syllabus common to all Branch).	_	2*+2	_	_	_	2	2
Total		14	18		13	01	09	23

* Two hours of practical class to be conducted for full class as demo/discussion. Theory / Tutorial 1 credit for 1 hour and Practical 1 credit for 2 hours

Institute shall offer a course for Open Elective from Science/Commerce/Management stream bucket provided by the University of Mumbai.

#Institute shall offer a course for MDM from other Engineering Boards.

		Examination Scheme									
	Course Description	Internal Assessment Test (IAT)									
Course Code		IAT-I	IAT-II	Total (IAT-I) + IAT-II)	End Sem. Exam Marks	End Sem. Exam Duration (Hrs)	Term Work (Tw)	Oral & Pract.	Total		
2404111	Finite Element Analysis	20	20	40	60	2	25		125		
2404112	Manufacturing Processes	20	20	40	60	2			100		
2404113	Theory of Machines	20	20	40	60	2			100		
2404211	Multidisciplinary minor	20	20	40	60	2			100		
2404311	To be taken from the bucket provided by the University from other Faculty	20	20	40	60	2			100		
2404114	Manufacturing Processes Lab						25	25	50		
2404115	Theory of Machines Lab						25	25	50		
2404212	Multidisciplinary minor						25		25		
2404411	CAD Modeling						50	25	75		
2404511	Business Model Development (Syllabus common to all Branches).						50		50		
2404512	Design Thinking (Syllabus common to all Branch).						50		50		
	100	100	200	300	10	250	125	825			

Vertical – 1 Major

Course Code	Course Name	Teac (Con	ching Sche ntact Hou	eme urs)		Credits A	Assigned	
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2403111	Engineering Mathematics-III	02	-	01	02	-	01	03

				Theor	У		Term	Pract (Oral	Total
Course	Course Name	Interi	nal Asses	sment	End	Exam	WOLK	/ Orai	
Code		Test 1	Test 2	Total	Exam	(in Hrs)			
2403111	Engineering Mathematics-III	20	20	40	60	02 hrs	25	-	125

Pre-requisite: Applied Mathematics-I, Applied Mathematics-II

Rationale: Engineering has always been the backbone of modern industries and civilization Now, new technologies like Artificial Intelligence (AI) in engineering are entirely changing existing engineeringfields and creating new ones. Mechanical engineering concern with the responsible development of products, processes, and power, at scales ranging from molecules to large and complex systems. Mechanical engineering principles and skills are involved at some stage during the conception, design, development, and manufacture of every human-made object with moving parts.

Course Objectives:

- 1. To familiarize with the Laplace transform, Inverse of various functions, its applications.
- 2. To familiarize with the Inverse Laplace transform of various functions, its applications.
- 3. To acquaint with the concept of Fourier series of periodic functions with various period.
- 4. To familiarize with the concept of complex variables, C-R equations with applications.
- 5. To introduce concepts and fundamentals Matrix algebra for engineering problems.
- **6.** To study the application of the knowledge of matrices and numerical methods in complex engineering problems.

Course Outcomes: Learner will be able to....

- 1. Apply the concept of Laplace transform to solve the real integrals in engineering problems.
- 2. Apply the concept of inverse Laplace transform of various functions in engineering problems.
- 3. Expand the periodic function by using Fourier series for real life problems and omplex engineering problems.
- 4. Find analytic function by using basic concepts of complex variable theory.
- 5. Apply Matrix algebra to solve the engineering problems.

Solve Partial differential equations by applying numerical solution and analytical methods for one dimensional heat and wave equations.

Mo	Detailed Contents	H	СО
dule		rs	Mapp
	Module: Laplace Transform	•	mg
	1.1 Definition of Laplace transform, Condition of Existence of Laplace		
	transform,		
01	Laplace Transform (L) of Standard Functions like e^{at} , $sin(at)$, $cos(at)$,		
01	$sinh(at), cosh(at) and t^n$, where $n \ge 0$.		
	1.2 Properties of Laplace Transform: Linearity, First Shifting theorem,	05	CO1
	change of scale Property multiplication by t Division by t Laplace Transform		
	of integrals (Properties without proof).		
	1.3 Evaluation of integrals by using Laplace Transformation.		
	Self-learning topics: Laplace Transform of derivatives ,Heaviside's Unit		
	Step function, Laplace Transform of Periodic functions, Dirac Delta Function,		
	Second Shifting Theorem.		
	Module: Inverse Laplace Transform		
	2.1 Inverse Laplace Transform, Linearity property, use of standard		
	formulae to find inverse Laplace Transform, finding Inverse		
	Laplace transform using derivative		
	2.2 Partial fractions method & first shift property to find inverse Laplace	04	CO2
00	transform.		
02	2.3 Inverse Laplace transform using Convolution theorem (without proof)		
	Self-learning Topics: Applications to solve initial and boundary value		
	problems involving ordinary differential equations.		
02	Module: Fourier Series:		
05	5.1 Difficiltet's conditions, Definition of Fourier series. Fourier series of periodic function with period 2π and $2l$ (No		
	α guestions should be ask on split function)		
	3.2 Fourier series of even and odd functions. (No question should be ask on	05	CO3
	split function)	05	
	3.3 Half range Sine and Cosine Series.		
	Self-learning Topics: Complex form of Fourier Series, orthogonal and		
	orthonormal set of functions, Parseval's Identity.		
	EXAMPLE 2 NOTION IS COMPLEX VARIABLES: 4.1 Function $f(z)$ of complex variable limit continuity and differentiability		
	of $f(z)$,		
	Analytic function, necessary and sufficient conditions for $f(z)$ to be		
04	analytic		
	(without proof), Cauchy-Riemann equations in cartesian coordinates		
	(without		
	proof) 4.2 Milne-Thomson method to determine analytic function $f(z)$ when real	04	CO4
	4.2 where -1 norms on method to determine analytic function $f(2)$ when real part (ii)		
	or Imaginary part (v) is given.		
	4.3 Harmonic function, Harmonic conjugate.		
	Self-learning Topics: Milne-Thomson method to determine analytic function		
	f(z) when (u+v or u-v) is given, Conformal mapping, linear, bilinear mapping, cross		
	ratio, fixed points and standard transformations, orthogonal trajectories.		

	Module: Matrices:		
	5.1 Characteristic equation, Eigen values and Eigen vectors, Properties		
	of Eigen values and Eigen vectors. (No theorems/ proof)		
05	 5.2 Cayley-Hamilton theorem (without proof): Application to find the inverse of the given square matrix and to determine the given higher degree polynomial matrix. 5.3 Similarity of matrices, Diagonalization of matrices Self-learning Topics: Verification of Cayley Hamilton theorem, Minimal polynomial and Derogatory matrix & Quadratic Forms (Congruent transformation & Orthogonal Reduction). Functions of square matrix 	04	CO5
	& Offiogonal Reduction), Functions of square matrix.		
06	 Module: Numerical methods for PDE 6.1 Introduction of Partial Differential equations, method of separation of variables, Vibrations of string, Analytical method for one dimensional heat equations. (only problems) 6.2 Crank Nicholson method 6.3 Bender Schmidt method Self-learning Topics: Analytical method for one dimensional wave equations, Analytical methods of solving two and three dimensional problems. 	04.	CO6
		26	
	Total Hours		

References:

- 1 Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 2 Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited,
- 3 Advanced Engineering Mathematics, R. K. Jain and S.R.K. Iyengar, Narosa publication
- 4 Advanced Engineering Mathematics, H.K. Das, S. Chand Publication
- 5 Higher Engineering Mathematics B.V. Ramana, McGraw Hill Education
- 6 Complex Variables and Applications, Brown and Churchill, McGraw-Hill Education,
- 7 Text book of Matrices, Shanti Narayan and P K Mittal, S. Chand Publication
- 8 Laplace transforms, Murray R. Spiegel, Schaum's Outline Series

Term Work:

General Instructions:

- 1 Batch wise tutorials are to be conducted. The number of student's per batch should be as per University pattern for practicals.
- 2 Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 3 A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1	Attendance (Theory and Tutorial)	05 marks
2	Class Tutorials on entire syllabus	10 marks
3	Mini project	10 marks

Assessment:

Internal Assessment (IA) for 20 marks:

IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test Duration of each test shall be one hour.

End Semester Examination:

- Question Paper will comprise of a total of Six questions each carrying 15 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **Four questions** need to be answered.

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theory	Pract.	Tut.	Theory Pract. Tut. Tota			Total
2403112	Strength of Materials	3	-	-	3	-	-	3

				Theor	У	ſ	Term work	Pract / Oral	Total
Course	Course Name	Interi	nal Asses	sment	End	Exam Duration			
Code		Test 1	Test 2	Total	Exam	(in Hrs)			
2403112	Strength of Materials	20	20	40	60	2			100

Course Objectives:

- 1. To introduce students to the fundamental concepts of stress, strain, and mechanical properties of materials, including the analysis of principal stresses and strains under different loading conditions.
- 2. To equip students with the ability to analyze structural members subjected to axial, torsional, and bending loads, using theoretical formulations such as torsion equations, bending theory, and stress-strain relationships.
- 3. To develop the skills in students to construct shear force and bending moment diagrams and evaluate beam deflections using methods such as double integration and Maxwell's reciprocal theorem.
- 4. To explain failure theories related to columns, and to enable students to compute critical buckling loads and stress distributions in thin shells.

Course Outcomes: Learner will be able to...

- 1. Identify and compute different types of stresses and strains and determine principal stresses and planes using analytical and graphical methods.
- 2. Analyze torsional stresses in solid and hollow shafts and evaluate strain energy under various loading conditions.
- 3. Construct shear force and bending moment diagrams for statically determinate beams and apply area moment of inertia concepts.
- 4. Determine bending and shear stress distributions in beams and analyze stresses in thin cylindrical and spherical shells.
- 5. Calculate deflections and slopes of beams under various loading.
- 6. Evaluate buckling loads for columns with different end conditions.

Module	Detailed Contents	Hrs	CO
			Mapp ing
	Pre-requisites: Concepts of equilibrium in beams, support reactions; Centroid		
1.	 1.1 Introduction-Concept of Stress Deformation in solids- Hooke's law, stress and strain- tension, compression and shear stresses, Stress Strain Diagram, elastic constants and their relations-volumetric, linear and shear strains. Thermal stress and strain. 	05	CO1
	1.2 Principal StressesPrincipal stresses and Principal planes- Mohr's circle.	03	

	2.1 Area Moment of Inertia Area Moment of Inertia about centroidal axes. Parallel Axes theorem. Polar	02			
	Moment of Inertia.	-			
	2.2 Torsion:		-		
2.	Torsion equation, Torsion of circular shafts-solid and hollow, stresses in shafts	05	CO2		
	when transmitting power				
	2.3 Strain Energy:				
	Strain energy stored in the member due to gradual, sudden and impact loads,	03			
	Strain energy due to bending and torsion.				
	Shear Force and Bending Moment Diagrams in Beams	05			
	Introduction to types of beams, supports and loadings. Definition of bending				
2	moment and shear force, relationship between load intensity, bending moment		CO		
5.	and shear force. Shear force and bending moment diagrams for statically				
	determinate beams subjected to point load, uniformly distributed loads, couple				
	and their combinations.				
	Stresses in Beams and Thin Shells				
	4.1 Bending and Shear Stresses in Beams				
	Theory of bending of beams, bending stress distribution, shear stress distribution	04			
4.	for point and distributed loads in simply supported and cantilever beams.		CO4		
	4.2 Thin Shells				
	Stresses and deformation in Thin Cylindrical and Spherical Shells subjected to	02			
	internal pressure.				
	Deflection of Beams				
5.	Deflection of a beam: Double integration method, Macauley's method for	05	COS		
	computation of slopes and deflection in beams for point and distributed loads.				
	Columns				
6.	Buckling load, Types of end conditions for column, Euler's column theory and	05			
	its limitations and Rankine formula.				
	Total Hours	39			

Textbooks

- 1. James M. Gere and Barry J. Goodno: Mechanics of Materials, 2nd Edition, Cengage Learning (2009)
- 2. S. Ramamrutham: Strength of Materials, 14th Edition, Dhanpat Rai Pvt. Ltd. (2014)
- 3. S. B. Junnarkar: Mechanics of Structures, 24th Edition, Charotar Publication. (2015)
- 4. S. S. Ratan: Mechanics of Materials, 2nd Edition, Tata McGraw Hill Pvt. Ltd. (2011)

Reference Books

- 1. W. Nash, Schaum's Outline Series: Strength of Materials, 5th Edition, McGraw Hill Publication, Special Indian Edition. (2015)
- 2. Beer, Johnston, DeWolf and Mazurek: Mechanics of Materials, 8th Edition, TMH Pvt Ltd, New Delhi. (2020)
- 3. Ryder: Strength of Materials, 3rd Edition, Macmillan (Publisher) (1969)
- 4. Irwin H. Shames: Introduction to Solid Mechanics, 3rd Edition, Pearson Publisher (2015)
- 5. R. Subramanian: Strength of Materials, 3rd Edition, Oxford University Press (2016)

Web Resources

- 1 <u>https://swayam.gov.in/nd1_noc20_ce34</u> Swayam Course Material.
- 2 <u>https://nptel.ac.in/courses/112107146</u> NPTEL Course Material.
- 3 <u>https://archive.nptel.ac.in/courses/105/105/105105108</u> NPTEL Course Material.

Assessment:

Internal Assessment for 40 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Course	Course Name	Teac (Co	hing Sche ntact Hou	eme rs)		Credits A	Assigned	
Code		Theory	Pract.	Tut.	Theory Pract. Tut. Tota			
2403113	Thermodynamics	3	-	-	3 3			

			Theory					Pract	Total
Course	Course Name	Intern	nal Asses	sment	End	Exam	work	/ Oral	
Code	Course runne	Test 1	Test 2	Total	Sem Exam	(in Hrs)			
2403113	Thermodynamics	20	20	40	60	2			100

Rationale :

Thermodynamics concepts are useful in understanding and designing systems involving energy transfer and energy transformation.

Course Objectives: Six Course Objectives

1. To familiarize the concepts of Energy in general and Heat and Work in particular

2. To study the fundamentals of quantification and grade of energy

3. To study the effect of energy transfer on properties of substances in the form of charts and diagrams

4. To familiarize with the application of the concepts of thermodynamics in vapour power and gas power cycles.

5. To study the concepts of compressible fluid flow

6. To study the concepts of reactive systems

Course Outcomes: Six Course outcomes (Based on Blooms Taxonomy)

- 1. Demonstrate application of the laws of thermodynamics to a wide range of systems.
- 2. Compute heat and work interactions in thermodynamic systems
- 3. Demonstrate the interrelations between thermodynamic functions to solve practical problems.
- 4. Compute thermodynamic interactions using the steam table and Mollier chart
- 5. Compute efficiencies of heat engines, power cycles.
- 6. Apply the fundamentals of compressible fluid flow to the relevant systems

Prerequisite:

DETAILED SYLLABUS: Total six module for each subject (13 Weeks)

Sr. No.	Name of Module	Detailed Content	Hour s	CO Mappin g
0	Prerequisite	Thermodynamics system and types, Microscopic and Macroscopic approach, System, Boundary and Surrounding, Thermodynamic properties, Zeroth Law of Thermodynamics, First law of thermodynamics, Internal Energy, Concept of Enthalpy and Entropy		
I	Basic Concepts :	Introduction and Basic Concepts of Thermodynamics : Thermodynamic state, path, process and cycle, Point and Path functions, Quasi-static process & Equilibrium, Characteristic gas equation, Heat and Work. Concept of PdV work.		
		First Law of Thermodynamics: Statement & Equation, First law for Cyclic process (Joule's experiment), Perpetual Motion Machine of the First Kind, Application of first law to non-flow systems (Ideal gas processes with numerical) First law applied to flow system: Concept of flow process and flow energy, Concept of the steady flow process, Energy balance in a steady flow, Application of steady flow energy equation to nozzle, turbine, compressor, pump, boiler, condenser, heat exchanger, throttling device. Steady flow work, Significance of – VdP work, Relation between flow and non-flow work	6	CO1
П	Second Law of Thermodynamics:	Second Law of Thermodynamics: Limitation of the first law of thermodynamics, Thermal reservoir, Concept of heat engine, Heat pump and Refrigerator, Statement of the second law of thermodynamics, Reversible and irreversible Process, Causes of irreversibility, Perpetual Motion Machine of the second kind,Carnot cycle, Carnot theorem. Entropy: Clausius theorem, Entropy is property of a system, Temperature-Entropy diagram, Clausius inequality, Increase of entropy principle, T ds relations, Entropy change During a process.	8	CO2
Ш	Availability:	Availability:Highgradeandlow-gradeenergy,AvailableandUnavailableenergy,DeadState,Useful work, Irreversibility, Availability of closedsystem& steady flow process, Helmholtz & Gibbs function(Only Theory)Thermodynamic Relations:Maxwell relations, Clausis-Clapeyron Equation, Mayerrelation, Joule-Thomson coefficient (Only Theory)	4	CO3

IV	Properties of Pure	Properties of Pure Substance:		
	Substance:	Advantages and applications of steam, Phase change process of water, Saturation pressure and temperature, Terminology associated with steam, Different types of steam. Property diagram: T-v diagram, p-v diagram, p-T diagram, Critical and triple point, T-s and an h-s diagram for water, Calculation of various properties of wet, dry and superheated steam using the steam table and Mollier chart. Vapour Power cycle: Principal components of a simple steam power plant, Carnot cycle and its limitations as a vapour cycle, Rankine cycle with different turbine inlet conditions, Mean	7	CO4
		temperature of heat addition, Reheat Rankine Cycle.		
v	Gas Power cycles:	Gas Power cycles: Nomenclature of a reciprocating engine, Mean effective pressure, Assumptions for Air Standard Cycle, Otto cycle, Diesel Cycle and Dual cycle, Comparison of Otto and Diesel cycle for same compression ratio, Brayton Cycle. Sterling Cycle, Ericsson Cycle, Lenoir cycle, and Atkinson cycle (Only theory).	6	CO5
VI	Compressible Fluid flow: Reactive Systems	Compressible Fluid flow: Propagation of sound waves through compressible fluids, Sonic velocity and Mach number; Stagnation properties, Application of continuity, momentum and energy equations for steady-state conditions; Steady flow through the nozzle, Isentropic flow through ducts of varying cross- sectional area, Effect of varying back pressure on nozzle performance, Critical pressure ratio (Only Theory) Reactive Systems: Combustion, theoretical and actual combustion processes, enthalpy of formation and enthalpy of combustion, Adiabatic flame temperature, first law analysis of reactive	8	CO6

Text Books:

- 1. Thermodynamics by P K Nag, 6thEdition,TMH
- 2. Thermodynamics by Onkar Singh, 4th Edition New Age International
- **3.** Thermodynamics by C P Arora,1stEditionTMH

References:

- 1. Thermodynamics: An Engineering Approach by Yunus A. Cengel and Michael A. Boles, 9thedition, TMH
- 2. Basic Engineering Thermodynamics by Rayner Joel, 5thedition, Longman Publishers
- 3. Engineering Thermodynamics by P Chattopadhyay, 2ndedition, Oxford University Press India
- 4. Engineering Thermodynamics Through Examples by Y V C Rao, Universities Press (India) Pvt Ltd
- 5. Fundamentals of Thermodynamics by Moran & Shapiro, Eighth Edition, Wiley
- 6. Fundamentals of Classical Thermodynamics by Van Wylen G.H. & Sonntag R.E., 9th Edition John Wiley& Sons
- 7. Thermodynamics by W.C. Reynolds, McGraw-Hill &Co
- 8. Thermodynamics by J P Holman, 4th Edition McGraw-Hill & Co

Online References:

Sr. No.	Website Name
1.	https://nptel.ac.in/courses/112/105/112105266
2.	https://nptel.ac.in/courses/112/103/112103275
3.	https://nptel.ac.in/courses/112/105/112105220
4	https://nptel.ac.in/courses/101/104/101104063

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **Three questions** need to be answered

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2403114	Material Science	3	-	-	3	-	-	3

				Theor	У		Term	Pract	Total
Course	Course Name	Inter	nal Asses	sment	End	Exam	work	/ Oral	
Code	Course Maine	Test 1	Test 2	Total	Sem	Duration			
					Exam	(in Hrs)			
2403114	Material Science	20	20	40	60	2			100

Rationale:

Materials are the basis for all technologies and hence is relevant to engineering.

Course Objectives: Six Course Objectives

- 1. To familiarize with the concept of crystal formation and imperfections
- 2. To understand the concept of effect of temperature on deformability of metals.
- 3. To acquaint with the mechanism of crystallization and phase transformations
- 4. To make understand the phase transformations of Iron-Iron carbide system
- 5. To familiarize with the heat treatment processes
- 6. To Understand mechanism of failure in materials.

Course Outcomes: Six Course outcomes (Based on Blooms Taxonomy)

- 1) Identify the various classes of materials and comprehend their properties
- 2) Differentiate between concepts of hot and cold working.
- 3) Able to interpret solidification behavior and phase transformation.
- 4) Apply phase diagram concepts to engineering applications
- 5) Apply particular heat treatment for required property development
- 6) Identify the probable mode of failure in materials and suggest measures to prevent them

Prerequisite:

DETAILED SYLLABUS: total six module for each subject (13 Weeks)

Sr. No.	Name of Module	Detailed Content	Hours	CO Mapping
0	Prerequisite			
Ι	Introduction to Crystals and Imperfections	Classification of materials: Introduction to engineering materials, significance of structure property correlations in all classes of engineering materials. Concepts of crystals- Crystalline and Non-crystalline Materials Unit cell, Crystal structures of metals, Crystal systems, Crystallographic planes and directions, Crystal Defects: Crystal Imperfections- definition, classification and significance of imperfections ,point defects, line defects, Surface defects and volume defects. Importance of dislocations in deformation and its mechanisms. Critical resolved shear stress, Slip systems and deformability of FCC, BCC and HCP lattice systems.	08	1
Ш	Hot -Cold Working mechanisms	Concept of Recrystallization, effects and mechanism of cold work and hot work, Need for Recrystallization Annealing, the stages of recrystallization annealing and factors affecting.	05	2
Ш	Crystallization & Phase Transformations	Nucleation-Homogeneous and Heterogeneous Nucleation and Growth. Solidification of metals and alloys, Cooling curves. Classification of Alloys based on phases and phase -diagrams Binary alloy phase diagrams – ,Isomorphous, Eutectics type I and II, Peritectic.	07	3
IV	Iron-Iron carbide phase diagram	Invariant reactions, microstructural changes of hypo and hyper-eutectoid steel, Solidification of different alloys from the Iron-Iron carbide diagram, TTT and CCT diagram-Hardenability and its tests, Graphitization in cast irons.	08	4
V	Heat treatment & Alloy Steel	Objectives, Thorough treatments: Annealing and types, normalizing, hardening and tempering. Isothermal treatments austempering and martempering. Surface hardening processes: Carburizing , Nitriding ,Cyaniding and Carbonitriding, induction and flame hardening. Alloy steels-Stainless steels, Tool steels, Maraging steels and Ausformed steels	06	5
VI	Fracture & Failure Mechanism	Fracture of metals, Ductile Fracture, Brittle Fracture, Ductile to Brittle Transition Temperature (DBTT), Griffith's criteria and Orowan's modification. Fatigue/Endurance limit of ferrous and non- ferrous metals, Fatigue test, S-N curves, factors affecting fatigue, structural changes accompanying fatigue. Creep, mechanism of creep, stages of creep and creep test, creep resistant materials.	05	6

Text Books:

- 1. Callister's Materials Science and Engineering, 2nd edition by R.Balasubramanium Wiley India Pvt. Ltd
- 2. Introduction to Engineering Materials, B K Agrawal, Tata Mcgraw Hill
- 3. Materials Science and Engineering : A First Course, RaghavanV , Prentice Hall India
- 4. MATERIAL SCIENCE AND METALLURGY FOR ENGINEERS by <u>Dr. V.D Kodgire and S.V Kodgire</u>.Everest Publishing House

References:

- 1. . Introduction to Physical Metallurgy, SidneyH. Avner, Tata McgrawHill
- 2. Introduction to Materials Science for Engineers; 8th Edition by James F. Shackelford Pearson
- 3. Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th Edition by William D. Callister, Jr., David G. Rethwisch , Wiley & Sons.
- 4. Materials Science and Engineering, 5th edition by V.Raghavan, Prentice Hall India
- 5. R. A. Higgins ENGINEERING METALLURGY Part I R.A.Higgins (Higgins, Raymond A.)

Links:

- 1 https://archive.nptel.ac.in/courses/113/102/113102080/
- 2 https://www.youtube.com/watch?v=JOQpbJIakRM
- 3. https://www.youtube.com/watch?v=2F9NEoXvkQE
- 4. https://www.youtube.com/watch?v=XUB1wiKfbUk
- 5 https://www.youtube.com/watch?v=MoiJSjwjbxs
- 6. <u>https://www.youtube.com/watch?v=Yx-bIKo-_wg</u>

Online References:

Sr. No.	Website Name
1.	https://iisc.ac.in/outreach/publications/iisc-lecture-notes-series/
2.	https://ocw.mit.edu/courses/3-012-fundamentals-of-materials-science-fall-2005/pages/lecture-notes/
3.	https://www.usna.edu/NAOE/_files/documents/Courses/EN380/Course_Notes/Ch11 _Fracture.pdf

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of **six questions each carrying 20 marksQ.1** will be **compulsory** and should **cover maximum contents of the syllabus**
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **Three questions** need to be answered

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2403115	Materials Testing		2	-		1	-	1

			Examination Scheme						
Course Code	Course Name	Theory Marks Internal assessment			End	Term	Practical/		
		Test 1	Test 2	Avg. of 2 Tests	Sem. Exam	wor k	Oral	1 otal	
2403115	Materials Testing					25	25	50	

Lab Objectives: Six Lab Objectives

- 1. To familiarize students with examination techniques of microstructure in ferrous and or nonferrous metals to make them understand a correlation between microstructure and mechanical properties.
- 2. To introduce students to fundamentals of testing methods used to evaluate the mechanical properties of engineering materials.
- 3. To familiarize the students about fatigue test and S-N curve.
- 4. To introduce to the students simple tension test to analyze the stress strain behaviour of materials
- 5. To develop hands-on skills in students in conducting standard material tests such as impact, hardness, torsion, and compression.
- 6. To cultivate the ability in students to interpret and analyze test results in relation to properties and behavior of materials under different loading conditions.

Lab Outcomes: Six Lab outcomes (Based on Blooms Taxonomy)

- 1. Prepare metallic samples for studying its microstructure following the appropriate procedure.
- 2. Identify effects of heat treatment on microstructure of medium carbon steel and hardenability of steel using Jominy end quench test.
- 3. Perform fatigue test and draw S-N curve.
- 4. Perform simple tension test to analyze the stress strain behaviour of materials.
- 5. Measure torsional strength, hardness and impact resistance of the material.
- 6. Perform flexural test with central and three-point loading conditions.

Prerequisite: Material Science & Strength of Materials Course

DETAILED SYLLABUS: Syllabus related Lab experiment must be considered and mapped with Blooms Taxonomy.

Total six module for each subject lab (13 weeks) to be distributed among six modules.

A. List of Experiments: Minimum *eight* experiments to be performed (*Four* Experiments each from both the groups):.

Sr. No.	Modu le	Detailed Content	Hours	LO Mapping
0	Prereq uisite	Comment (Prerequisite syllabus should not be considered for paper setting)		
1.		Metallographic characterization involves preparing and analyzing metal samples to reveal their microstructure. This process includes sample preparation steps like cutting, mounting, grinding, and polishing, followed by etching to enhance structural details.	02	LO1
2.		This experiment investigates the changes in microstructure and hardness of medium carbon steel after annealing, normalizing, and hardening heat treatments. The study focuses on how these treatments affect the steel's mechanical properties, particularly hardness and ductility	02	LO2
3.		Experimental studies on tempering hardened steel demonstrate that increasing the tempering temperature leads to a decrease in hardness and an increase in toughness. Tempering also reduces brittleness and improves ductility.	02	LO2
4.		The Jominy end quench test is a standard method for determining the hardenability of steel, which is the ability of steel to transform from austenite to martensite upon cooling from a high temperature. The test involves heating a cylindrical steel sample, then quenching one end with water to create a cooling gradient. Hardness measurements are then taken along the sample's length to determine the depth of hardening.	02	LO2
5.		Rotating beam fatigue testing involves applying a bending stress to a cylindrical specimen while it rotates, inducing alternating tensile and compressive stresses on its surface. This method simulates the fatigue conditions experienced by components like axles or shafts under cyclic loading. The test is run until the specimen fails or a predetermined number of cycles is reached, allowing for the determination of fatigue endurance limits and life cycles.	02	LO3
		Group B		

6.	A tension test on a mild steel bar is a destructive test used to determine its mechanical properties like stress- strain behavior, yield strength, and modulus of elasticity. The test involves applying a tensile force to the specimen, measuring the resulting elongation, and analyzing the load-elongation data to create a stress- strain curve. This curve reveals the material's elastic and plastic behavior, including the yield point where permanent deformation begins, and the ultimate tensile strength.	02	LO4
7.	A torsion test on mild steel or cast iron bars involves twisting a bar to induce shear stress, measuring the resulting angle of twist, and recording the torque applied. This test is used to determine material properties like modulus of rigidity (G) and shear strength.	02	LO5
8.	Impact tests, like Izod and Charpy, evaluate a material's resistance to sudden impact loads by measuring the energy absorbed during fracture. These tests, often using a notched specimen and a swinging pendulum, provide insights into a material's toughness and ductility. The Charpy test, for example, is typically performed with the specimen supported horizontally, while the Izod test uses a vertical specimen.	02	LO5
9.	The Brinell and Rockwell hardness tests are two methods used to determine the hardness of metals by measuring the resistance to indentation. The Brinell test uses a steel or carbide ball pressed into the metal surface, and the hardness is determined by measuring the diameter of the indentation. The Rockwell test measures the depth of indentation produced by a diamond cone or hardened steel ball under a specific load.	02	LO5
10	A flexural test on a beam with central loading, also known as a three-point bending test, is a method to determine the material's resistance to bending stresses. In this test, a beam is placed on supports, and a load is applied at the center (mid-span). The test measures the load required to cause a specific deflection or fracture, allowing the calculation of flexural strength and modulus.	02	LO6

Text Books:

1. Callister's Materials Science and Engineering, 2nd edition by R.Balasubramanium Wiley India Pvt. Ltd

References:

- 1. Introduction to Materials Science for Engineers; 8th Edition by James F. Shackelford Pearson
- 2. Introduction to Physical Metallurgy,2nd edition by Sidney Avner, TataMcGrawHill
- 3. Mechanical Metallurgy, 3rd edition by GH Dieter, TataMcGraw Hill
- 4. Fundamentals of Materials Science and Engineering: An Integrated Approach, 5th Edition by William
- D. Callister, Jr., David G. Rethwisch, Wiley & Sons.
- 5. Materials Science and Engineering, 5th edition by V.Raghavan, Prentice Hall India

Online Resources:

Sr.	Website Name
No.	
1	https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-mm09
2	https://nptel.ac.in/courses/113/102/113102080/
3	https://nptel.ac.in/noc/courses/noc20/SEM1/noc20-mm09/
4	https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_09_m.pdf
5	https://nptel.ac.in/content/storage2/courses/112108150/pdf/PPTs/MTS_08_m.pdf
67	https://nptel.ac.in/courses/112/104/112104229/
8	https://nptel.ac.in/courses/118/104/118104008/
9	https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec_6.pdfhttp s://nptel.ac.in/courses/112/104/112104229/
10	https://nptel.ac.in/courses/118/104/118104008/
11	https://nptel.ac.in/content/storage2/courses/112104173/Mod_1_smart_mat_lec_6.pdf

List of Experiments.

Sr No	List of Experiments	Hrs
01	Study of Characterization techniques and Metallographic sample preparation	02
01	and etching.	02
02	Comparison of Microstructures and hardness before and after Annealing,	02
02	Normalizing and Hardening in medium carbon steel.	02
03	Study of tempering characteristics of hardened steel.	02
04	Determination of hardenability of steel using Jominy end	02
04	Quench Test (Using different hardness testers to measure the Hardness)	02
05	Fatigue test using Rotating Beam Specimen.	02
	Group B	
06	Tension test on mild steel bar (stress-strain behaviour,	02
00	determination of yield strength and modulus of elasticity)	02
07	Torsion test on mild steel bar / cast iron bar	02
08	Impact test on metal specimen (Izod/Charpy Impact test)	02
09	Hardness test on metals — (Brinell/ Rockwell Hardness Number	02
10.	Flexural test on beam (central loading)	02

Sr No	Group C. List of Assignments / Tutorials (At least <i>two</i> problems on each of the following topics [©]	Hrs
01	Simple Stress and Strain	2
02	Torsion and Strain Energy	2
03	SFD and BMD	2
04	Stresses in Beams and Thin Shells	2
05	Deflection of Beams	2
06	Buckling of Columns	2

Project Based Learning may be incorporated by judiciously reducing number of assignments. For example, project on topics like, Preparation and Testing of parts made of composite material/s, testing of components made using 3D Printing, etc. *may be* considered.

Assessment :

Term Work: Term Work shall consist of at least 8 to 9 practical based on the above list. Also, Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2403116	Working Drawing- GD & T	-	2	-	-	1	-	1

Course Code	Course Name	Examination Scheme							
		Theory Marks							
		Internal assessment			End	Term	Practical/	Total	
		Test1 Test	Test 2	Avg. of 2	Sem.	Work	Oral	Total	
		1 (51)	1030 2	Tests	Exam				
	Working								
2403116	Drawing-					25	25	50	
	GD & T								

Lab Objectives: Six Lab Objectives

- 1. To familiarize with different types of drawings and symbols used in working drawings
- 2. To impart fundamentals of limits, tolerances and fits used in working drawings
- 3. To impart fundamentals of- surface roughness, machining symbols and working drawing reading
- 4. To impart fundamentals of GD & T
- 5. To familiarize with symbols, rules and datums used in GD & T
- 6. To familiarize with form, orientation and position used in GD & T

Lab Outcomes: Six Lab outcomes (Based on Blooms Taxonomy) After completion of this laboratory course, the students will be able to

Interpret appropriate symbols used in working drawings Interpret tolerances used in working drawings Show the surface roughness components on the working drawing and read the working drawings Show geometric characteristic symbols on a working drawing Apply GD & T symbols in a working drawing Show form and orientation on a part drawing

Prerequisite:

ESC201: Engineering Graphics ESL201: Engineering Graphics Lab

DETAILED SYLLABUS: Syllabus related Lab experiment must be considered and mapped with Blooms Taxonomy. total six module for each subject lab (13 weeks) to be distributed among six modules

total six module for each subject lab (13 weeks) to be distributed among six modules.

Sr. No.	Module	Detailed Content	Hours	LO (Lab Outcome) Mapping
0	Prerequisite	Comment (Prerequisite syllabus should not be considered for paper setting)		
Ι	Introduction	Classification of drawings- machine drawing, production drawing, part drawing, assembly drawing and its types, patent drawing, Need of working drawing, difference between machine drawing and working drawing. Conventional representation (symbols) of materials, conventional representation of machine components – screw threads, welded joints, springs, gears, shafts bearings, knurling, Standard drafting and material abbreviations	04	LO1
П	Limits, tolerances and fits	Limit systems and terms used – tolerance, limits, deviation, actual deviation, upper deviation, lower deviation, allowance, basic size, design size, actual size. Tolerances- graphical illustration of tolerance zones, fundamental tolerances, fundamental deviation, calculation of fundamental shaft deviation, calculation of fundamental hole deviation Fits- types of fits with symbols and applications, hole basis and shaft basis systems	04	LO2
III	Surface roughness, Machining symbols, working drawing	Surface roughness representation, indication of surface roughness, symbols specifying direction of lay, indication of machining allowance and surface roughness allowance on drawings, Reading a working drawing	06	LO3
IV	Introduction to GD & T	What is GD & T, when to use GD & T, advantages of GD & T over Coordinate Dimensioning and Tolerancing. Geometric characteristic symbols like- Form, Profile, Orientation, Runout, Location, etc.	04	LO4
V	Symbols, Rules and Datums	Geometric characteristic Symbols The feature control frame Rules Material conditions - Regardless of feature size (RFS), Maximum material condition (MMC), Least material condition (LMC), Material condition symbols and abbreviations Degrees of freedom and immobilization of a part, application of Datums, datum feature selection, datum feature (inclined, cylindrical, etc.) identification, establishing datums, datum targets	04	LO5
VI	Form, orientation and position	Form- flatness, straightness, circularity, cylindricity Orientation- Parallelism, Perpendicularity, Angularity Position (general) - Specifying the Position Tolerance, Regardless of Feature Size, MMC, Shift Tolerance, LMC	04	LO6
Text Books:

1. Narayana KL, Kannaiah P, Reddy VK, Machine Drawing, by New Age International Publishers

2. Bhatt ND, Machine Drawing, Charotar Publishing House Pvt. Ltd., 50th Edition, ISBN-13: 978-9385039232, 2014

References:

1. Cogorno GR, Geometric Dimensioning and Tolerancing for Mechanical Design: A Self-Teaching Guide to ANSI Y 14.5M1982 and ASME Y 14.5M1994 Standards / Edition 1 by The McGraw-Hill Companies, Inc.

2. Kampbell RG, Roth ES, Integrated Product Design and Manufacturing Using Geometric Dimensioning and Tolerancing, by Marcel Dekker, Inc.

3. Meadows JD, Geometric dimensioning and tolerancing, by B.S Publications.

Online Resources:

Sr. No.	Website Name
	https://www.gdandtbasics.com/
	https://www.asme.org/codes-standards/y14-standards
	http://www.ttc-cogorno.com/Courses/BluePrint.pdf

List of Experiments.

Sr No	List of Exercises	Hrs
51 140	(Using AutoCAD)	1115
	Draw a simple mechanical part (sample part is shown in figure below) and write	
	an interpretation of the meaning of the geometrical tolerances for it by means of	
	neat sketches and explanatory notes.	
01 (Module 2)		
	Figure for sample exercise: Sample mechanical part	
	Students shall draw a simple mechanical part and indicate the following surface	
02	roughness components on it:	
(Module	Symmetrical surfaces requiring the same quality	
3)	Cylindrical part	
	Same surface quality all over	
	following geometric characteristic symbol on it -	
03	Form (straightness/flatness/circularity/cylindricity)	
(Module 4)	Profile (line/surface)	
,	Orientation (angularity/perpendicularity/parallelism)	
	Runout (circular/total)	
	Location (position/concentricity/symmetry)	

01 (Module 1)	To write an assignment showing – Conventional representation (symbols) of materials conventional representation of machine components – screw threads, welded joints, springs, gears, shafts bearings, knurling, Standard drafting and material abbreviations	
02 (Module 3)	Copy of a working drawing of mechanical components (such as- rear tool post, pump housing, gear box cover, steam stop valve, milling fixture, etc.) to be provided to the students along with the questions based on the drawing reading and students shall write answers to the questions based on the drawing reading. Sample questions are provided here- What is the overall size? How many bolts are provided? How many screws are provided? What is the size of the tap? How is the cover fixed to the gear box? (Note: These are sample questions and to be customized based on the type of component)	
03 (Module 5)	To write an assignment covering - the feature control frame, Material conditions - Regardless of feature size (RFS), Maximum material condition (MMC), Least material condition (LMC), Material condition symbols and abbreviations	

Assessment:

Term Work: Term Work shall consist of at least 10 to 12 practicals' based on the above list. Also, Term work Journal must include all the 05 exercises (prints) and 03 assignments.

Term Work Marks: 25 Marks (Total marks) = 20 Marks (Experiment/assignments) + 5 Marks (Attendance)

Practical& Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Vertical – 5

Course	rse le Course Name	Teac (Co	hing Sche ntact Hou	eme rs)	Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2993511	Entrepreneurship Development		2*+2	-	-	2*+2	-	2

		Examination Scheme								
		Theory Marks								
Course Code	Course Name	Internal assessment			End Sem. Exam	Term Work	Practical/ Oral	Total		
		Test1	Test 2	Avg. of 2 Tests						
2993511	Entrepreneursh ip Development					50		50		

Note: * Two hours of practical class to be conducted for full class as demo/discussion/theory.

Lab Objectives:

- 1. To introduce students to entrepreneurship concepts and startup development.
- 2. To develop business idea generation, validation, and business model preparation.
- 3. To provide hands-on experience in market research, financial planning, and business pitching.
- 4. To enhance problem-solving and decision-making skills in entrepreneurial ventures.
- 5. To familiarize students with government schemes and support systems for entrepreneurs.
- 6. To develop communication and presentation skills required for business pitching.

Lab Outcomes:

Upon successful completion of this course, students will be able to:

- 1. Understand the fundamental concepts of entrepreneurship and business models.
- 2. Conduct market research and develop business plans.
- 3. Utilize financial planning and cost analysis for startups.
- 4. Apply entrepreneurial skills to identify and solve business challenges.
- 5. Develop prototypes using open-source software for business operations.
- 6. Pitch business ideas effectively with structured presentations.

DETAILED SYLLABUS

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Fundamentals of communication and leadership skills.	01	
I	Introduction to Entrepreneurship	Definition, Characteristics, and Types of Entrepreneurs. Entrepreneurial Motivation and Traits. Start-up Ecosystem in India. Challenges in Entrepreneurship	02	LO1
П	Business Idea Generation & Validation	Ideation Techniques: Design Thinking, Brainstorming, Mind Mapping. Business Model Canvas (BMC). Market Research & Customer Validation. Minimum Viable Product (MVP) Concept.	04	LO2
III	Business Planning & Strategy	Writing a Business Plan. SWOT Analysis and Competitive Analysis. Financial Planning and Budgeting. Risk Assessment and Management	04	LO3
IV	Funding and Legal Framework	Sources of Funding: Bootstrapping, Angel Investors, Venture Capital Government Schemes & Start-up India Initiatives. Business Registration & Legal Formalities. Intellectual Property Rights (IPR) & Patents	05	LO4
V	Marketing & Digital Presence	Branding and Digital Marketing. Social Media Marketing & SEO. Customer Relationship Management (CRM). E- commerce & Online Business Models	05	LO5
VI	Business Pitching & Prototype Development	Pitch Deck Preparation & Presentation Techniques. Prototyping with Open- source Tools. Elevator Pitch & Investor Pitch. Case Studies of Successful Start- ups	05	LO6

Text Books:

- 1. "Entrepreneurship Development and Small Business Enterprises" Poornima M. Charantimath, Pearson, 3rd Edition, 2021.
- 2. "Innovation and Entrepreneurship" Peter F. Drucker, Harper Business, Reprint Edition, 2019.
- 3. "Startup and Entrepreneurship: A Practical Guide" Rajeev Roy, Oxford University Press, 2022.
- 4. "Essentials of Entrepreneurship and Small Business Management" Norman Scarborough, Pearson, 9th Edition, 2021.
- 5. "The Lean Startup" Eric Ries, Crown Publishing, 2018.

References:

- 1. "Disciplined Entrepreneurship: 24 Steps to a Successful Startup" Bill Aulet, MIT Press, 2017.
- 2. "Zero to One: Notes on Startups, or How to Build the Future" Peter Thiel, 2014.
- 3. "The \$100 Startup" Chris Guillebeau, Crown Business, 2019.
- 4. "Business Model Generation" Alexander Osterwalder & Yves Pigneur, Wiley, 2020.
- 5. "Blue Ocean Strategy" W. Chan Kim & Renée Mauborgne, Harvard Business Review Press, 2019.

Online Resources:

Webs	ite Name
1.	Startup India Portal – <u>https://www.startupindia.gov.in</u>
2.	MIT OpenCourseWare – Entrepreneurship – https://ocw.mit.edu/courses/sloan- school-of-management/
3.	Coursera – Entrepreneurship Specialization – https://www.coursera.org/specializations/entrepreneurship
4.	Harvard Business Review – Entrepreneurship Articles – https://hbr.org/topic/entrepreneurship

5. Udemy – Startup & Business Courses – https://www.udemy.com/courses/business/entrepreneurship/

List of Experiments.

Sr No	List of Experiments	Hrs
01	Business Idea Generation using Mind Mapping.	02
02	Conducting Market Research & Customer Validation.	02
03	Preparing a Business Model Canvas for a Startup Idea.	02
04	Developing a Financial Plan & Break-even Analysis.	02
05	Creating a Website using WordPress/Wix.	02
06	Social Media Marketing Campaign using Open-source Tools.	02
07	Digital Prototyping using Figma/Inkscape.	02
08	Business Pitch Deck Preparation & Presentation.	02
09	Exploring Government Schemes for Startups.	02
10	Legal Compliance & IPR Basics (Case Study).	02

Sr No	List of Assignments / Tutorials	Hrs
	a. Write a report on any successful entrepreneur and their startup journey.	
01	b. Conduct SWOT analysis for a real-life startup.	02
02	Develop a business idea and create a one-page business plan.	02
03	Conduct market research using surveys & present findings.	02
04	Design a simple logo and branding strategy for a startup.	02
05	Create a financial model and cost estimation for a startup.	02
06	Make a case study report on startup failure analysis.	02

List of Open-Source Software

- 1. Canva Designing pitch decks, social media posts, and branding materials.
- 2. Trello / Asana Project management for startups.
- 3. GIMP / Inkscape Graphic design and logo creation.
- 4. WordPress / Wix Website development for startups.
- 5. OpenCart / PrestaShop E-commerce website setup.
- 6. Figma UI/UX design and prototyping.
- 7. LibreOffice Calc Financial planning and budgeting.
- 8. Google Suite (Docs, Sheets, Slides) Documentation and presentations.
- 9. Python (Pandas, Flask, Django) Data analytics and web application development.
- 10. MailChimp Email marketing and customer engagement.

Assessment :

Term Work: Term Work shall consist of at least 9 to 10 practical's based on the above list. Also, Term work Journal must include at least 5 to 6 assignments.

Term Work Marks: 50 Marks (Total marks) = 20 Marks (Experiment) + 15 Marks (Assignments) + 5 Marks (Attendance) + 10 Marks (Report)

Course Code Course Name	Teac (Co	ching Sche ntact Hou	eme Irs)	Credits Assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2993512	Environmental Science		2*+2	-		2*+2	-	2

				Term	Pract /	Total			
Course Code		Internal Assessment			End	Exam	work	Oral	
	Course Name	Test1	Test 2	Avg. of 2 Tests	Sem Exam	Duration (in Hrs)			
2993512	Environmental Science						50		50

Note: * Two hours of practical class to be conducted for full class as demo/discussion/theory.

Rationale:

Most of the engineering branches are offspring of applied sciences, and their practices have a significant impact on the environment. Understanding environmental studies is essential for engineers to develop sustainable solutions, minimize ecological footprints, and promote responsible resource management. This course equips students with the knowledge of ecosystems, biodiversity, pollution control, and environmental laws, enabling them to integrate sustainability into engineering practices.

Lab Objectives:

- 1. To understand the scope, importance, and role of environmental studies in public awareness and health.
- 2. To study different natural resources, their issues, and sustainable conservation.
- 3. To understand ecosystem types, structures, and functions.
- 4. To explore biodiversity, its importance, threats, and conservation.
- 5. To learn about pollution types, causes, effects, and control measures.
- 6. To understand environmental challenges, sustainability, and ethics.

Lab Outcomes:

- 1. Explain the significance of environmental studies and the role of IT in environment and health.
- 2. Describe resource types, associated problems, and conservation methods.
- 3. Classify ecosystems and explain their role in ecological balance
- 4. Analyze biodiversity levels and conservation strategies, especially in India.
- 5. Explain pollution impacts and suggest preventive measures.
- 6. Discuss environmental issues and propose sustainable solutions.

Unit Name	Topic Name	Topic Description	Hours	LO Mapping
Ι	The Multidisciplinary Nature of Environmental Studies	Definition, scope and importance. Need for public awareness, Role of information technology in environment and human health. Human population and the environment: Population growth, variation among nations. Population Explosion- family welfare program. Environment and human health Women and child welfare	03	LOI
Π	Natural Resources	 Renewable and non-renewable resources. Natural resources & associated problems: a) Forest resources: b) Water resources: Natural resources & associated problems c) Mineral resources: d) Food resources: e) Energy resources: Role of an individual in conservation of natural resources: f) Equitable use of resources for sustainable lifestyles. 	04	LO2
Ш	Ecosystems	Concepts of an ecosystem. Introduction, types, characteristic features, structure and function of the following ecosystem: a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries). Case study on various ecosystems in India.	05	LO3
IV	Biodiversity and its Conservation	Introduction-Definition: genetic species and ecosystem diversity. Bio-geographical classification of India Value of biodiversity : Consumptive use, productive use, social, ethical, aesthetic and option values, Bio-diversity at global, national, local levels India as a mega diversity nation Case study on Bio diversity in India.	05	LO4
V	Environmental Pollution Definition	Causes, effects and control measures of: a) Air pollution b) Water pollution c) Soil pollution. Solid waste management: Causes, effect and control measures of urban and industrial wastes. Role of an individual in prevention of pollution, Case study on Pollution Disaster management: floods, earthquake, cyclone and landslides. Carbon Credits for pollution prevention	05	LO5

VISocial Issues and EnvironmentFrom unsustainable to sustainable development Urban problems related to energy, Water conservation, rain water harvesting, watershed management. Environmental ethics: issues and possible solution. Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies. Consumerism and waste products. Environment protection act. Public awareness Case study on Environmental Ethics04	LO6	
---	-----	--

Textbooks

- 1. Environmental Science: Towards a Sustainable Future, G. Tyler Miller and Scott Spoolman, 13th Edition, Cengage Learning 2021
- 2. Environmental Management: Text and Cases, Bala Krishnamoorthy, 3rd Edition, PHI Learning, Publication Year: 2016
- 3. Green IT: Concepts, Technologies, and Best Practices, Markus Allemann, Springer 2008
- 4. Sustainable IT: Slimming Down and Greening Up Your IT Infrastructure, David F. Linthicum, IBM Press 2009
- 5. Environmental Modelling: Finding Solutions to Environmental Problems, David L. Murray, Cambridge University Press 2016
- 6. Remote Sensing and Image Interpretation, Thomas M. Lillesand, Ralph W. Kiefer, and Jonathan W. Chipman, 9th Edition, John Wiley & Sons 2020
- 7. Business Ethics: Concepts and Cases, Manuel Velasquez, Pearson 2012

Reference Books

- 1. Environmental Law and Policy in India, Shyam Divan and Armin Rosencranz, 2nd Edition, Oxford University Press 2018
- 2. The International Handbook of Environmental Laws, David Freestone and Jonathon L. Rubin, Edward Elgar Publishing 2000
- 3. E-Waste Management: Challenges and Opportunities in Developing Countries, Ruediger Kuehr and Ram K. Jain, Springer 2008
- 4. The E-Waste Handbook: Managing Electronic Waste, Klaus Hieronymi, Ruediger Kuehr, and Ram K. Jain, Earthscan 2009
- 5. Environmental Ethics: An Introduction, J. Baird Callicott, University of Georgia Press1999

Online References:

Sr. No.	Website Name
1.	Centre for Science and Environment (CSE), Website: cseindia.org
2.	Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India
3.	CSIR-National Environmental Engineering Research Institute (NEERI)

List of Experiments.

Sr No	List of Experiments	Hrs
01	Study of Environmental Components and Ecosystems.	2
02	Visit and Report on Solid Waste Management Plant.	2
03	Study of Renewable Energy Sources (Solar, Wind, Biogas).	2
04	Analysis of Air and Water Quality Parameters.	2
05	Study of Local Biodiversity and Conservation Methods.	2
06	Awareness Activity on Environmental Issues.	2
07	Rainwater Harvesting System Design	2
08	Case Study on Environmental Pollution & Control Measures.	2
09	Report on Climate Change Impact and Adaptation.	2
10	Study of Environmental Laws and Acts.	2
11	Study of Disaster Management Techniques.	2
12	Report on Role of IT in Environmental Protection.	2

Sr No	List of Assignments / Tutorials	Hrs
01	Prepare a report on Renewable and Non-Renewable Resources.	2
02	Write a case study on Ecosystem Types in India	2
03	Write a report on Biodiversity in India.	2
04	Prepare a report on Pollution Types and Control Measures.	2
05	Prepare a report on Environmental Ethics and Sustainability.	2
06	Prepare a case study report on Global Warming and Climate Change.	2
07	Report on Role of an Individual in Environmental Protection.	2
08	Write a report on Disaster Management Techniques.	2
09	Prepare a report on Environmental Laws and Acts in India.	2
10	Case Study on E-waste Management and Recycling Techniques.	2

Assessment :

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also, Term work Journal must include at least 8 to 10 assignments.

Term Work Marks: 50 Marks (Total marks) = 20 Marks (Experiment) + 15 Marks (Assignments) + 5 Marks (Attendance) + 10 Marks (Report)

Vertical – 6

Course Code	Course Name	Teac (Co	ching Sche ntact Hou	eme Irs)	Credits Assigned				
			Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2403611	Mini Project (Group Project)		4	-	-	2	-	2	

Course				Term	Pract	Total			
Code		Inter	nal Asses	sment	End Sem	Exam Duration	WOLK	/ Orai	
		Test 1	Test 2	Total	Exam	(in Hrs)			
2403611	Mini Project (Group					50	25	75	

Course Objectives:

1. To acquaint yourself with the process of identifying the needs and converting it into the problem.

2. To familiarize the process of solving the problem in a group.

3. To acquaint yourself with the process of applying basic engineering fundamentals to attempt solutions to the problems.

4. To inculcate the process of self-learning and research.

Course Outcomes: Learner will be able to

1. Identify problems based on societal /research needs.

2. Apply Knowledge and skill to solve societal problems in a group.

3. Develop interpersonal skills to work as a member of a group or leader.

4. Draw the proper inferences from available results through theoretical/ experimental/simulations.

5. Analyze the impact of solutions in societal and environmental context for sustainable development.

6. Use standard norms of engineering practices

- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.

9. Demonstrate project management principles during project work.

Guidelines for Minor Project:

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do surveys and identify needs, which shall be converted into a problem statement for minor-project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Student groups shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of the minor project.
- A log book has to be prepared by each group, wherein the group can record weekly work progress, and the guide/supervisor can verify and record notes/comments.
- Faculty supervisors may give inputs to students during minor project activity; however, focus shall be on self-learning.
- Students in a group shall understand the problem effectively, propose multiple solutions and select the best possible solution in consultation with the guide/supervisor.
- Students shall convert the best solution into a working model using various components of their domain areas and demonstrate.
- The solution has to be validated with proper justification and the report has to be compiled in the standard format.
- With the focus on self-learning and innovation, addressing societal problems and entrepreneurship quality development within the students through the Minor Projects, it is preferable that a single project of appropriate level and quality be carried out by all the groups of the students.

Guidelines for Assessment of Minor Project –Continuous assessment and Term Work:

- The review/ progress monitoring committee shall be constituted by heads of departments of each institute. The progress of the minor project to be evaluated on a continuous basis, Minimum two reviews in each semester- 50 marks.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of term work marks for the semester shall be as below:
 - Quality of project report and presentation- 25 marks
 - Development of prototype/scaled model for project- 25 marks

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including:
 - Identification of need/problem
 - Proposed final solution
 - Procurement of components/systems
 - Building prototype and testing
- Two reviews will be conducted for continuous assessment,
 - First shall be for finalization of problem and proposed solution
 - Second shall be for implementation and testing of solutions.

Assessment criteria of Minor Project:

- 1. Quality of survey/need identification
- 2. Clarity of problem definition based on need
- 3. Innovativeness/uniqueness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness/uniqueness
- 8. Cost effectiveness and societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual as member or leader
- 13. Clarity in written and oral communication

Sample Minor Projects: Tensegrity Structures for Mechanical applications, Computer Aided Beam Analysis, Catapult etc Minor Project topics should involve the core subjects of semester 3.

Guidelines for Assessment of Minor Project - Practical/Oral Examination: 25 marks

- Report should be prepared as per the guidelines issued by the Department.
- Minor project shall be assessed through a presentation and demonstration of working model or the execution of programme code by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by the Head of Institution.
- Students shall be motivated to publish a paper based on the work in conferences or student competitions.

Semester – IV

Vertical –1 Major

Course Code	Course Name	Teac (Co	ching Sche ntact Hou	eme rs)	Credits Assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
2404111	Finite Element Analysis	3	-	-	3	-	-	3	

Course		Theory						Pract	Total
Coue		Internal Assessment			End Sem	Exam Duration	WUIK	/ 01ai	
		Test 1	Test 2	Total	Exam	(in Hrs)			
2404111	Finite Element Analysis	20	20	40	60	2	25		125

Rationale :

Most of the engineering branches are being off-spring of.....

Course Objectives: Six Course Objectives

- 1. To study the concept of FEM and various methods in it
- 2. To understand the knowledge of application of Matrix Algebra & Gaussian Elimination.
- **3.** To study the finite element modeling approaches and understands the concept of boundary conditions.
- **4.** To study 2D problems for Constant strain triangle, temperature effects, problem modeling and boundary conditions.
- 5. To study the concept of heat transfer and fluid flow.
- **6.** It provides a bridge between hand calculations based on mechanics of materials and machine design and numerical solutions for more complex geometries and loading states

Course Outcomes: Six Course outcomes (Based on Blooms Taxonomy)

- **1.** Apply the knowledge of principal of FEA, its types, governing equation, fundamental concept of solid mechanics.
- 2. Remember the mathematical understanding required for FEA and finite difference techniques.
- **3.** Understand the knowledge of application of FEA such as related to stress on beams, three dimensional frames, and heat transfer.
- 4. Apply the knowledge of FEA in project work
- **5.** Derive and use 1-D and 2-D element stiffness matrices and load vectors from various methods to solve for displacements and stresses.
- **6.** Apply mechanics of materials and machine design topics to provide preliminary results used for testing the reasonableness of finite element results.

Prerequisite:

- 1. Mechanics of materials
- 2. DME I and DME II (Static and dynamic failure theories)
- 3. Engineering Graphics

DETAILED SYLLABUS: total six module for each subject (13 Weeks)

Sr.	Name of Module	Detailed Content	Hours	CO Monning
190.				mapping
0	Prerequisite	Mechanics of materials, DME I and DME II (Static and dynamic failure theories), Engineering Graphics.		
I	Introduction :	 Brief History of FEM, Finite Element Terminology (nodes, elements, domain, continuum, Degrees of freedom, loads & constraints). Application, Advantages, Steps of FEM, Stress and Equilibrium, Boundary conditions, Strain Displacement Relations, Stress-strain Relations, Von mises stress, Temperature effect, Potential Energy & Equilibrium, Gelerkin's Method, stiffness (Displacement) Method. Home Exercise 1: Introduction to Ansys Tools(Pre- 	07	CO1
		Processing, Processing and Post-Processing)		
П	Matrix Algebra & Gausian Elimination:	 Matrix Multiplication, Transposition, Diagonal Matrix, Symetric Matrix, Upper Triangular Matrix, Determinant of Matrix, Matrix Inversion Eligen values & Elgen vectors, Gaussian elimination. Home Exercise 2: Finite Element Analysis (element selection, assigning properties, meshing, assigning loads, and boundary conditions, analysis and result interpretation). 	06	CO2
Ш	1D ELEMENT:	Types of 1D element: Displacement function, Global and local coordinate systems, Order of element, primary and secondary variables, shape functions and its properties. Formulation of elemental stiffness matrix and load vector for spring, bar, beam, truss and Plane frame. Transformation matrix for truss and plane frame, Assembly of global stiffness matrix and load vector, Properties of stiffness matrix, half bandwidth, Boundary conditions elimination method and penalty approach, Symmetric boundary conditions, Stress calculations. Home Exercise 3: Any two problems using bar element	07	CO3

IV	1D Steady State Heat Transfer Problems :	 Introduction, Governing differential equation, steady- state heat transfer formulation of 1D element for conduction and convection problem, boundary conditions and solving for temperature distribution. Home Exercise 4: Any one problem on steady state heat conduction 	06	CO4
v	Dynamic Analysis:	Types of dynamic analysis, General dynamic equation of motion, point and distributed mass, lumped and Consistent mass, Mass matrices formulation of bar and beam element. Undamped-free vibration- Eigen value problem, Evaluation of eigen values and eigenvectors (natural frequencies and mode shapes). Home Exercise 5: Any one problem of free vibration analysis using bar element	06	CO5
VI	2D ELEMENTS:	Second Order 2D Equations involving Scalar Variable Functions — Variation formulation –Finite Element formulation — Triangular elements — Shape functions and element matrices and vectors. Application to Field Problems —Torsion of Non circular shafts – Quadrilateral elements. Stress analysis of CST. Home Exercise 6: Any two problems using CST element	07	CO6

Text Books:

- 1. Introduction to Finite Element Engineering T.R.Chandrupatla, Belegunda; PHI
- 2. A First course in Finite Element Method- Darya Logon, ThompsonLearning (TL Publisher)

3. Concepts and Applications of Finite Element Analysis, R. D. Cook, et al. Wiley, India **References:**

- 1. Seshu P., —Text book of Finite Element Analysis^{II}, PHI Learning Private Ltd. New Delhi, 2010.
- 2. Bathe K. J., —Finite Element Procedures^I, Prentice-Hall of India (P) Ltd., New Delhi.
- 3. Fagan M. J., —Finite Element Analysis, Theory and Practicel, Pearson Education Limited.
- 4. Kwon Y. W., Bang H., —Finite Element Method using MATLABI, CRC Press, 1997
- 5. S. Moaveni, —Finite element analysis, theory and application with Ansys!,
- 6. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill
- 7. TheFiniteElement Method in Engineering- S.S.Rao, Elsveir Pub.
- 8. An Introduction to FiniteElement Method-J.N.Reddy, Tata Mc-graw Hil

Online References:

Sr. No.	Website Name (NPTEL/SWAYAM Courses)
1.	https://nptel.ac.in/courses/112/104/112104193/
2.	https://nptel.ac.in/courses/105/106/105106051/
3.	https://nptel.ac.in/courses/112/104/112104115/
4.	https://nptel.ac.in/courses/112/103/112103295/
5.	https://nptel.ac.in/courses/112/106/112106135/
6.	https://nptel.ac.in/courses/112/106/112106130/
7.	https://nptel.ac.in/courses/105/105/105105041/
8.	https://nptel.ac.in/courses/112/104/112104116/

Assessment:

Internal Assessment (IA) for 20 marks:

- IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test
- **Question paper format**
- Question Paper will comprise of a total of six questions each carrying 20 marksQ.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **Three questions** need to be answered

Course Code	Course Name	Teac (Cor	hing Sch ntact Hou	eme 1rs)	Credits Assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2404112	Manufacturing Processes	3	-	-	3	-	-	3

		Theory Term						Pract	Total
		Internal Assessment			End Som	Exam Duratio	work	/ Oral	
		Test 1	Test 2	Total	Exa m	n (in Hrs)			
2404112	Manufacturing Processes	20	20	40	60	2			100

Course Objectives:

- 1. To prepare the students understand basic manufacturing processes and Metal Casting used in industries.
- 2) To familiarize with joining manufacturing fundamentals
- 3) To make the students understand various hot and cold working processes and sheet metal forming methods and its applications.
- 4) Topreparethestudentsunderstandvariousmachinetoolsandbasicmachiningprocesses as well as understand the fundamentals of metal cutting.
- 5) 5.To familiarize with principle and working of non-traditional manufacturing
- 6) 6.To introduce to them the intelligent manufacturing in the context of Industry 4.0

Course Outcomes: Learnerwillbeableto

- 1.Demonstrate an understanding of casting process
- 2. Demonstrate applications of various types of welding processes.
- 3. Illustrate principles of forming processes.
- 4. Differentiate chip forming processes such as turning, milling, drilling, etc.
- 5. Illustrate principles and working of non-traditional manufacturing
- 6 Illustrate the concept of producing polymer components and ceramic components.
- 7. Understand the manufacturing technologies enabling Industry 4.0

Prerequisite: Required Knowledge of Engineering Workshop-I &II, Engineering Materials and Metallurgy

DETAILED SYLLABUS:

Sr. No.	Name of Module	Detailed Content	Hours	CO Mapp ing
0	Prerequisite	Required Knowledge of Engineering Workshop-I&II, Engineering Materials and Metallurgy.		-
I	Introduction to Manufacturing processand Metal Casting	Classification of Manufacturing Processes and applications areas Pattern making materials, Types of pattern and allowances. Sand molding and Machine molding Gating system: Types of riser, types of gates, solidification Special casting processes: CO2 and shell molding, Investment casting, Die casting, Vacuum casting, Inspection & casting defects and remedies.	06	CO1
Π	Joining Processes	 Classification of various joining processes; Applicability, advantages and limitations of Adhesive bonding, Mechanical Fastening; Welding and allied processes, Hybrid joining processes. Classification and Working of various welding methods: Gas, Arc, Chemical, Radiant, Solid State etc. Welding Joints, Welding Positions, Welding defects and their remedies. 	07	C02
Ш	Metal Forming Process and Sheetmetalworkin gprocesses	 3.1 Metal Forming Process Introduction and classification of metal working processes, hot and cold working processes Introduction, classification and analysis offorging and rolling operations, Defects in rolled and forged components, Extrusion process, Classification and analysis of wire and tube drawing processes. Sheet metal working processes Classification of Sheet metal operations, types of Presses use din sheet metal operations, types of dies. 	06	C03
IV	MachineTools, Machining Process	 4.1MachineToolsandMachiningProcesses Lathe Machines, Milling Machines, Drilling Machines, and Grinding Machines and selection of grinding wheel, Broaching machines, Lapping/Honing machines (Super Finishing Operations) and shaping/slotting/planning Machines. Gear Manufacturing Gear milling, standard cutters and limitations, Gear Hobbing, GearShaping, Gear Shaving and Gear Grinding processes Theory of Metal cutting:Geometry and nomenclature of single point cutting tool, Speed, feed, depth of cut, Concept of chip formation and types of chips. 	10	CO4

V	Non Traditional Machining Processes:	Electro-chemicalmachining(ECM) Electric-dischargemachining(EDM) Ultrasonicmachining(USM) LaserBeamMachining(LBM)	04	CO5
VI	Polymer Processing, Powder Metallurgy: and Intelligent manufacturing in the context of Industry 4.0,	 6.1 Polymer Processing: Polymer Molding Techniquesfor thermoplastic andthermosetting plastics. Applications of Plastics in engineering field. 6.2 PowderMetallurgy: Introduction to Powder Metallurgy PM, Powder making processes, Steps in PM. Compaction and Sintering processes. Secondary and finishing operations in PM. 6.3 Intelligent manufacturing in the context of Industry4.0, Cyber-physicalsystems(CPS) Internet of Things(IoT)enabled manufacturing Cloud Manufacturing 	06	CO6

Text Books:

- 1. FoundrytechnologybyOPKhanna
- 2. Principle of Metal Casting- Heine, Loper and Rosenthal, Tata McGraw Hill.
- 3. WeldingtechnologybyOPKhanna
- 4. Manufacturing Technology (Foundation Forming & Welding)- P.N. Rao, Tata McGraw Hill.
- 5. Basic Manufacturing Process- D. Mishra IndiaTech Publisher, New Delh
- 6. Elementsof workshop technology.Vol. 1& IIbyS K HajraChoudhury
- 7. ManufacturingSciencebyGhoshand Malik
- 8. ProductionTechnologybyWAJ ChapmanVolI,II,III
- 9. Production TechnologybyP CSharma.
- 10. Production TechnologybyRaghuvanshi.

References

- 1. Manufacturing Engineering and Technology, 4th Edition- S.Kalpakjian and S.R. Scsimid, Pearson Education
- $\label{eq:2.1} 2 \ Industry 4.0: The \ Industrial Internet of \ Things by Alasdair Gilchrist, 2016, A press.$
- 3 Cyber-PhysicalSystems: FromTheorytoPracticebyDandaB.Rawat,JoelRodrigues,Ivan Stojmenovic, 2015, C.R.C. Press.

4. Optimization of Manufacturing Systems using Internet of Things by Yingfeng Zhang, Fei Tao, 2017, Academic Press (AP), Elsevier.

Online References:

Sr.	Links for online NPTEL/SWAYAM courses:
No.	
1	https://nptel.ac.in/courses/112/107/112107219/
2	https://nptel.ac.in/courses/112/107/112107215/
3	https://nptel.ac.in/courses/112/107/112107084/
4	https://nptel.ac.in/courses/112/107/112107144/
5	https://nptel.ac.in/courses/112/107/112107078/
6	https://nptel.ac.in/courses/112/107/112107239/
7	https://nptel.ac.in/courses/112/104/112104195/
8	https://nptel.ac.in/courses/112/107/112107219/
9	https://nptel.ac.in/courses/112/107/112107144/
10	https://nptel.ac.in/courses/112/107/112107213/
11	https://nptel.ac.in/courses/112/107/112107090/
12	https://nptel.ac.in/courses/113/106/113106087/
13	https://nptel.ac.in/courses/112/103/112103263/
14	https://nptel.ac.in/courses/112/107/112107239/
15	https://nptel.ac.in/courses/112/106/112106153/
16	https://nptel.ac.in/courses/112/107/112107250/
17	https://nptel.ac.in/courses/112/107/112107144/
18	https://nptel.ac.in/courses/112/107/112107239/
19	https://nptel.ac.in/courses/112/107/112107219/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question Paper Format:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- Questionpaperwillcompriseoftotalsixquestions,eachcarrying20marks Question1 will be compulsory and should cover maximum contents of the curriculum
- **Remainingquestions**willbe**mixedinnature**(forexampleifQ.2haspart(a)frommodule3the n part (b) will be from any module other than module 3)
- A total of **Three question** need to be answered.

Course Code	Course Name	Teac (Co	hing Sche ntact Hou	eme Irs)	Credits Assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
2404113	Theory of Machines	3	2	-	3	2	-	3	

				Theor	Term	Pract	Total		
		Internal Assessment			End	Exam	work	/ Oral	
		Test 1	Test 2	Total	Sem	Duration			
					Exam	(in Hrs)			
2404113	Theory of Machines	20	20	40	60	2			100

Rationale :

Course Objectives: Six Course Objectives

- 1. To acquaint with basic concept of kinematics of machine elements
- 2. To familiarize with basic and special mechanisms
- 3. To study the functioning of motion transmission machine elements
- 4. To study the functioning of power transmission machine elements
- 5. To acquaint with working principles and applications of Governors
- 6. To acquaint with working principles and applications of Gyroscope

Course Outcomes: Six Course outcomes (Based on Blooms Taxonomy)

- 1) Identify various components of mechanisms and develop mechanisms to provide specific motion
- 2) Draw and analyze velocity and acceleration diagrams for various mechanisms
- 3) Draw a cam profile for the specific follower motion
- 4) Predict conditions for maximum power transmission in the case of a belt drive
- 5) Illustrate requirements for an interference-free gear pair
- 6) Demonstrate working Principles of different types of governors and Gyroscopic effects on the mechanical systems

Prerequisite:

DETAILED SYLLABUS: total six module for each subject (13 Weeks)

Sr. No.	Name of Module	Detailed Content	Hours	CO Mapping
I		Basic Kinematics Kinematic link & its types, Kinematic pairs, Types of Kinematic pairs, Kinematic chains, Types of constrained motions, Mechanism, Machine, Structure, Types of joints, Degree of freedom (mobility), Kutzbach mobility criterion, Grübler's criterion & its limitations. Four bar chain and its inversions, Slider crank chain and its inversions, Double slider crank chain and its inversions. 1.2 Hooks Joint (Single and double)	06	1
Ш	Velocity and Acceleration Analysis	Velocity Analysis of Mechanisms (mechanisms up to 6 links) 2.1 Velocity analysis by relative velocity method (Graphical approach) 2.2 Acceleration Analysis of Mechanisms (mechanisms up to 6 links) Acceleration analysis by relative method (Graphical approach). (No Numerical on Coriolis Component)	08	2
Ш	Cam and Follower Mechanism	 3.1 Cam and follower; Classification Cam and follower terminology; 3.2 Motions of the follower: Uniform Velocity, SHM, Constant acceleration and deceleration (parabolic), Cycloidal. (Displacement, Velocity and acceleration Plots) 	06	3
IV	Power Transmission	Power Transmission Belts, Chains: 4.1 Belts: Introduction, Types, Dynamic analysis –belt tensions, condition of maximum power transmission 4.2 Chains: Introduction to Chain Drives, Classification of chains, length of chain. Types of brakes Introduction and Classification.(No Numerical)	06	5
V	Gears	5.1 Gears: Law of gearing, Forms of tooth, Details of gear terminology, Path of contact, Arc of contact, Contact ratio, Interference in involutes gears, Minimum number of teeth for interference free motion	06	5
VI	Governors and Gyroscopes	 6.1 Governors: Introduction to Centrifugal and Inertia governors, Study and Force analysis of Porter and Hartnell governors. 6.2 Gyroscope: Introduction, Gyroscopic couple and its effect on spinning bodies, naval ship during steering, pitching, rolling and their stabilization. 	08	6

Text Books:

- 1.1. S.S. Ratan, "Theory of Machines", Tata McGraw Hill
- 2. Ghosh and A.K. Mallik, "Theory of Mechanisms and Machines", East-West Press
- 3 Theory of Machines by Jagdish Lal Metropolitan Book New Delhi, Company, Daryaganj, Delhi

References:

- 1.1. J.J. Uicker, G.R. Pennock, and J.E. Shigley, "Theory of Machines and Mechanism", Oxford Higher Education
- P.L. Ballaney, "Theory of Machines", Khanna Publishers
- 3. M.A. Mostafa, "Mechanics of Machinery", CRC Press
- 4. R.L. Norton, "Kinematics and Dynamics of Machinery", McGraw Hill
- 5. A.G. Erdman, G.N. Sander, and S. Kota, "Mechanism Design: Analysis and Synthesis Vol I", Pearson
- 6 Theory of Machines Thomas Bevan CSB Publishers & Distributors

Online References:

Sr. No.	Website Name
1.	https://nptel.ac.in/courses/112/105/112105268/
2.	https://www.youtube.com/playlist?list=PLYRGB44zNZWVibVLmWANp-7obQzOhJLRt
3.	http://www.nptelvideos.in/2012/12/kinematics-of-machines.html

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question Paper Format:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- Questionpaperwillcompriseoftotalsixquestions,eachcarrying20marks Question1 will be compulsory and should cover maximum contents of the curriculum
- **Remainingquestions**willbe**mixedinnature**(forexampleifQ.2haspart(a)frommodule3the n part (b) will be from any module other than module 3)
- A total of **Three question** need to be answered.

Course Code	Course Name	Teac (Co	hing Sche ntact Hou	eme rs)	Credits Assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
2404115	Theory of Machines Lab	-	2	-	-	1	-	1	

Course Code	Course Name		Examination Scheme									
			The	ory Marks								
		Internal assessment			End	Term	Practical/	Total				
		Test	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Oral	Totai				
2404115	Theory of Machines Lab					25	25	50				

Lab Objectives: Six Lab Objectives

- 1. To familiarize with various mechanisms and inversions
- 2. To acquaint with basics of power transmission systems
- 3 To acquaint velocity and acceleration of mechanisms
- 4 To acquaint motion and power transmission
- 5 To acquaint with working principles and applications of governors
- 6 To acquaint with working principles and applications of gyroscope

Lab Outcomes: Six Lab outcomes (Based on Blooms Taxonomy)

- 1) Develop and build mechanisms to provide specific motion.
- 2) Find velocity of a mechanism by using Relative method.
- 3) Analyse velocity and acceleration of a specific link of a slider crank mechanism using graphical approach by Relative method. (Including Problems of Coriolis components of acceleration)
- 4) Plot displacement-time, velocity-time, and acceleration-time diagrams of follower motion and Draw cam profile for the specific follower motion.
- 5) Plot and analyze governor characteristics
- 6) Analyze principle of gyroscopic on laboratory model

Part (A) List of Experiments

Sr No	List of Experiments	Hrs
01	Using Virtual lab any one experiment on mechanism	2
02	Analysis of velocity of mechanisms by Relative Velocity method – 3 to 5 problems	4
03	Analysis of acceleration of mechanism by Relative method including pairs involving Coriolis acceleration -3 to 5 problems	4
04	Motion analysis and plotting of displacement–time, velocity-time and acceleration-time, jerk-time, and layout of cam profiles - 2 to 3 problems	2
05	Experiments on Governors- Porter Governor, Hartnell Governor	2
06	Experiments on Gyroscope	2

Part (B)

Sr No	List of Assignments / Tutorials	Hrs
01	Belts and Chains	2
02	Gears	2

Part (C)

Course project on design and fabrication of any one mechanism for a group of maximum 4 students

Assessment :

Term Work: Term Work shall consist part (a) + (b) +(c)

Term Work Marks: 25 Marks (Total marks) = 10 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks

(Course Project) + + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course	Course Name	Teac (Cor	hing Sch ntact Hou	eme 1rs)	Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2404114	Manufacturing Processes Lab	-	2	-	-	1	-	1

	Course Name	Examination Scheme								
Course Code		Theory Marks Internal assessment			S End Som	Term	Practical/	Tatal		
		Test1	Test 2	Avg. of 2 Tests	End Sem. Exam	Work	Oral	Totai		
2404114	Manufacturin g Processes Lab					25	25	50		

Lab Objectives:

1 To familiarize with the various safety measures and the operational procedures of various machines on the shop floor.

- 2. To familiarize with the pattern making process.
- 3. To introduce to the learner various machine tools used for manufacturing.
- 4. To understand the tool geometry of a single point cutting tool.
- 5. To familiarize various machining operations in industry.
- 6. To understand the principle and working of non-traditional manufacturing

Lab Outcomes:

- 1. Know the specifications, controls and safety measures related to machines and machining perations.
- 2. To make a pattern for moulding operation.
- 3. Perform various machining operations for making various engineering jobs.
- 4. To know Tool nomenclature and grinding operations.
- 5. To observe the application of various machine tools in actual industrial setup.
- 6. To observe the application of various non-conventional machining operations in industry.

Prerequisite:

Required Knowledge of Engineering Workshop-I &II

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	LO
No.				Mapping
0	Prerequisite	Required Knowledge of Engineering Workshop-I		
		&II		
1	Safety	Study of safety precautions in machine shop	02	LO1
	Measures	practices	02	201
2	Foundry	Various types of patterns, pattern allowances,	08	LO2
		pattern materials.		202
3	Machine Tools	Study of various Machining Processes on Lathe		
	and Machining	Machines, Milling Machines, shaping and Drilling	12	LO3
	Processes:	Machines.		
4	Demonstration	Study of Grinding Machines and selection of		
	of Tool	grinding wheel and To single point tool	02	LO4
	Grinding	Nomenclature		
5	Industrial Visit	Visit to a manufacturing industry to observe	_	1.05
		various Machining Operations.	-	205
6	Industrial visit	Visit to a non-conventional Machining facility.	_	1.06
			_	LOU

Text Books:

- 1. Foundry technology by O P Khanna
- 2. Elements of workshop technology. Vol. 1 & II by S K Hajra Choudhury
- 3 Production Technology by WAJ Chapman Vol I, II, III

References:

- 1. Principles of manufacturing materials and processes- J.S.Campbell, Tata McGraw Hill.
- 2. Manufacturing Engineering and Technology, 4th Edition- S.Kalpakjian and S.R. Scsimid, Pearson Education.
- 3. Materials and processes in manufacturing- DeGarmo, Black and Kohser, Prentice Hall of India.
- 4. Principle of Metal Casting- Heine, Loper and Rosenthal, Tata McGraw Hill.

List of Experiments:-

Sr No	List of Experiments	Hrs
01	Pattern making 1 job with wood, wax or any other material.	4
02	One composite job consisting of minimum three components covering taper turning and threading, shaping and milling operations.	16
03	Demonstration of single point cutting tool grinding.	2
04	Visit to a manufacturing industry to observe various machining operations.	2
05	Visit to a non-conventional machining facility	2

Term Work:

Term Work shall consist of 5 Practical's based on the above list. Complete Work-Shop Book giving details of drawing of the job and timesheet.

Term Work Marks:

25 Marks (Total marks) = 20 Marks (Experiment) + 5 Marks (Attendance)

Practical & Oral Exam: 25 Marks (Total marks)

An Oral exam will be held based on the above syllabus and the Practical examination will be based on the lathe operations.

Vertical – 4

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
2404411	CAD Modelling	-	4	-	-	2	-	2

Course Code	Course Name	Examination Scheme							
		Theory Marks Internal assessment			End	Term	Practical/	T ()	
		Test	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Oral	Totai	
2404411	CAD Modelling					50	25	75	

Lab Objectives: Six Lab Objectives

- 1. To familiarize geometric modelling techniques
- 2. To impart 2D sketching skills using CAD software
- 3. To impart the 3D Solid Modelling skills for the development of 3D models of engineering components.
- 4. To impart the 3D surface modelling skills for development of 3D models of basic engineering components.
- 5. To impart the 3D modelling skills for assembling different parts made in 3D modelling software.
- 6. To introduce Product data exchange among CAD systems.

Lab Outcomes: Six Lab outcomes (Based on Blooms Taxonomy)

Learner will be able to...

- 1. Use appropriate technique for geometric modelling.
- 2. Apply 2D sketching tools to prepare sketch of a given object using 3D CAD software.
- 3. Create solid model of the object using 3D CAD software.
- 4. Develop the surface model of a given object using 3D CAD software.
- 5. Generate assembly of given objects using assembly tools of a 3D CAD software
- 6. Use product data exchange formats to perform product data exchange among CAD systems.

Prerequisite:

- 1. ESL201: Engineering Graphics laboratory
- 2. PLC 303: Working Drawing GD & T laboratory

DETAILED SYLLABUS: Syllabus related Lab experiment must be considered and mapped with Blooms Taxonomy.

total six module for each subject lab (13 weeks) to be distributed among six modules.
Sr. No.	Module	Detailed Content	Hours	LO (Lab Outcomes) Mapping
0	Prerequisite	Comment (Prerequisite syllabus should not be considered for paper setting)	02	
Ι	Introduction to CAD	Different modelling techniques (solid modelling, surface modelling, parametric modelling, feature based modelling) for creation of CAD models, creation of CAD models from different perspectives.	02	LO1
Π	Sketching using 2D sketch tools	Setting the sketch environment, creating sketch from a geometry using the sketching commands like- line, circle, arc, etc., modification in sketches using commands like-move, trim, rotate, etc.), use of viewing commands like-pan, zoom, rotate, etc., use of sketch constraints.	08	LO2
Ш	Solid Modelling	Settings environment for part modeling, creating machine/engineering parts/components using features like – extrude, revolve, mirror, threading, fillet, hole, bend, rib, patterns (rectangular, circular, etc.), etc.	12	LO3
IV	Surface Modeling	Generation of surfaces from open profiles using create tools like extrude, sweep, loft, trim, etc., path & guide surface option commands like – extend, trim, shell, patch, etc., mesh of curves, free form surfaces	10	LO4
V	Assembly	Constraints, exploded views, interference check, drafting (layouts, standard & sectional views, detailing & plotting), use of transformations and manipulation commands (translate, rotate, scale, etc.) to modify and assemble the created CAD models.	16	LO5
VI	Data Exchange	CAD data exchange formats Like IGES, PDES, PARASOLID, DXF and STL along with their comparison and applicability.	02	LO6

Textbooks:

1. A textbook of Machine Drawing by Laxminarayan and M.L.Mathur, Jain brothers Delhi 3. Machine Drawing by

Kamat and Rao

2. A text book of Machine Drawing by R.B.Gupta, Satyaprakashan, Tech. Publication

References:

1. Machine Drawing by N.D. Bhatt.

2. Machine Drawing by K.I. Narayana, P. Kannaiah, K.Venkata Reddy

List of Experiments.

Sr No	List of Exercises	Hrs
01	3D modeling of basic Engineering components like - Nuts, Bolts, Keys, cotter, Screws, Springs etc. (Note: Any two out of above)	2
02	3D modeling of basic machine components like - Clapper block, Single tool post, Lathe and Milling tail stock, Shaper tool head slide, jigs and fixtures Cotter, Knuckle joint, Couplings: simple, muff, flanged Protected flange coupling, Oldham's coupling, Universal coupling, element of engine system and Miscellaneous parts. (Note: Any two out of above)	2
03	Generation of surface model of any two objects like - hull of a ship, aeroplane wing, etc. using various surface creation tools in CAD software.	2
04	 Generation of an assembly model (minimum five child parts) along with working (production) drawing of the system, creation of 3D models with assembly constraints, interference check, exploded view, GD&T, tolerance table and fit table, bill of material. Reverse Engineering of a physical model: disassembling of physical model having not less than five parts, measuring the required dimensions of each component, sketch the minimum views required for each component, convert these sketches into 3-D model and create an assembly drawing with actual dimensions (Note: Any one out of above) 	2

Using the knowledge and skills acquired through six modules, students should complete minimum seven assignments/experiments from the given sets of assignments using standard CAD modeler like – SolidWorks/ PTC Creo/CATIA /UG /any other suitable software.

Assessment:

Term Work: Term Work shall consist of at least 10 to 12 practicals based on the above list. Also, Term work Journal must include at least 7 exercises (prints) as mentioned above.

Term Work Marks: 25 Marks (Total marks) = 20 Marks (Experiment/Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Vertical – 5

Course	Course Name	Teac (Co	ching Sche ntact Hou	eme irs)	Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
2994511	Business Model Development		2*+2	-		2*+2	-	2	

				Theory	Term	Pract /	Total		
Course	Course Name	Internal Assessment			End	Exam	work	Oral	
Code		Test1	Test 2	Avg. of 2 Tests	Sem Exam	Duration (in Hrs)			
2994511	Business Model Development						50		50

Note: * Two hours of practical class to be conducted for full class as demo/discussion/theory.

Lab Objectives:

- 1. To introduce a learner to entrepreneurship and its role in economic development.
- 2. To familiarize a learner with the start-up ecosystem and government initiatives in India.
- 3. To explain the process of starting a business.
- 4. To familiarize a learner with the building blocks of a business.
- 5. To teach a learner to plan their own business with the help of Business Model Canvas.
- 6. To teach a learner to have financial plan for a business model.

Lab Outcomes:

The learner will be able to:

- 1. Discuss the role of entrepreneurship in the economic development of a nation and describe the process of starting a business.
- 2. Describe start-up ecosystems in Indian and global context.
- 3. Identify different types of business models.
- 4. Identify customer segments, channels and customer relationship components for a particular business.
- 5. Identify key activities, key partners and key resources for a particular business.
- 6. Develop a financial plan for a business with the help of cost structure and revenue model.

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	LO Manning
110.				Mapping
0	Prerequisite	Basic Design Thinking principles	01	
Ι	Introduction to Entrepreneurship	Introduction to Entrepreneurship : Definition, the role of entrepreneurship in the economic development, the entrepreneurial process, Women entrepreneurs, Corporate entrepreneurship,	04	L1, L2
		Entrepreneurial mindset Self-learning Topics: Case studies: Henry Ford <u>https://www.thehenryford.org/docs/default-</u> <u>source/default-document-library/default-document-</u> <u>library/henryfordandinnovation.pdf?sfvrsn=0</u> The Tatas: How a Family Built a Business and a Nation by Girish Kuber, April 2019, Harper Business		
II	Entrepreneurship Development	Entrepreneurship Development: Types of business ownerships: Proprietorship, Public and Private Companies, Co-operative businesses, Micro, Small and Medium Enterprises (MSME): Definition and role of MSMEs in economic development	05	L2, L3, L4
III	Start-up financing	Start-up financing: Cost and revenue models, Sources of start-up fundings: Angel investors, Venture capitalists, Crowd funding, Government schemes for start-up funding Self-learning Topics: Successful business pitching	04	L2, L3, L4, L5
IV	Intellectual Property Rights (IPR)	Intellectual Property Rights (IPR): Types of IPR: Patents, trademarks and copyrights, Patent search and analysis, Strategies for IPR protection, Ethics in technology and innovation	04	L2, L3, L4
V	Business Model Development	Business Model Development: Types of business models, Value proposition, Customer segments, Customer relationships, Channels, Key partners, Key activities, Key resources, Prototyping and MVP Self-learning Topics: The Art of the Start 2.0: The Time-Tested, Battle- Hardened Guide for Anyone Starting Anything by Guy Kawasaki	04	L3, L4, L5, L6
VI	Digital Business Management	Digital Business Management: Digital Business models (Subscription, Freemium <i>etc</i>), Digital marketing: Search Engine Optimization (SEO), Search Engine Marketing (SEM), Social media and influencer marketing, Disruption and innovation in digital business Self-learning Topics: Case study: Airbnb https://www.prismetric.com/airbnb-business-m	04	L2, L3

Textbooks:

- 1. Entrepreneurship: David A. Kirby, McGraw Hill, 2002
- 2. Harvard Business Review: Entrepreneurs Handbook, HBR Press, 2018
- 3. Business Model Generation; Alexander Ostlewalder and Yves Pigneur, Strategyzer, 2010
- 4. E-Business & E-Commerce Management: Strategy, Implementation, Practice Dave Chaffey, Pearson Education

Reference books:

- 1. Entrepreneurship: New venture creation by David Holt, Prentice Hall of India Pvt. Ltd.
- 2. E-Business & E- Commerce Management: Strategy, Implementation, Practice Dave Chaffey, Pearson Education

Online Resources:

Sr. No.	Website Name
3.	Entrepreneurship by Prof. C Bhaktavatsala Rao
	https://onlinecourses.nptel.ac.in/noc20_mg35/preview
4.	Innovation, Business Models and Entrepreneurship by Prof. Rajat Agrawal, Prof.
	Vinay Sharma
	https://onlinecourses.nptel.ac.in/noc21_mg63/preview
3.	Sarasvathy's principles for effectuation
	https://innovationenglish.sites.ku.dk/model/sarasvathy-effectuation/

List of Experiments.

The lab activities are to be conducted in a group. One group can be formed with 4-5 students. A group has to develop a Business Model Canvas and a digital prototype (Web App/ mobile app). Weekly activities are to be conducted as follows:

Sr No	Lab activities	Hrs
01	Problem identification (Pain points, Market survey)	2
02	Design a digital solution for the problem (Ideation techniques)	2
03	Preparing a business model canvas: Value proposition, Key partners, Key resources, Key activities	2
04	Preparing a business model canvas: Customer segment, Customer relationships and channels	2
05	Preparing a business model canvas: Cost and Revenue structure	2
06	Prototype development: Low fidelity	2
07	Prototype development: Customer feedback	2
08	Prototype development: High fidelity	2
09	Presentation of high-fidelity prototype	2

Sr No	List of Assignments / Tutorials	Hrs
01	Presentation on case study of a failed business model	2
02	Presentation on case study of a woman entrepreneur	2

Assessment:

Term Work: Term Work shall consist of 09 lab activities based on the above list. Also, Term work journal must include any 2 assignments from the above list.

Term Work Marks: 50 Marks (Total marks) = 25 Marks (Experiment) + 10 Marks (Assignments) + 5 Marks (Attendance)+10 Marks (Report).

Course Code	Course Name	Teac (Co	hing Sche ntact Hou	eme ers)	Credits Assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
2994512	Design Thinking		2*+2	-		2*+2	-	2	

	Course Name	Theory						Pract /	Total
Course		Internal Assessment			End	Exam	work	Oral	
Course Code		Test1	Test 2	Avg. of 2 Tests	Sem Exam	Duration (in Hrs)			
2004512	Decian Thinking			1 (515			50		50
2774312	Design Thinking						50		30

Note: * Two hours of practical class to be conducted for full class as demo/discussion/theory.

Lab Objectives:

- 1. To introduce a learner to the principles of Design Thinking.
- 2. To familiarize a learner with the process (stages) of Design Thinking.
- 3. To introduce various design thinking tools.
- 4. Study of the techniques for generation of solutions for a problem.
- 5. To expose a learner to various case studies of Design Thinking.
- 6. Create and test a prototype.

Lab Outcomes:

Students will be able to ...

- 1. Compare traditional approach to problem solving with the Design Thinking approach and discuss the principles of Design Thinking
- 2. Define a user persona using empathy techniques
- 3. Frame a problem statement using various Design Thinking tools
- 4. Use ideation techniques to generate a pool of solutions for a problem
- 5. Create prototypes using different techniques
- 6. Test the prototypes and gather feedback for refining the prototype

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	No perquisites	-	-
I	Introduction to Design Thinking	Introduction to Design Thinking:Definition,Comparison of Design Thinking and traditional problem- solving approach, Need for Design Thinking approach, Key tenets of Design Thinking, 5 stages of Design Thinking (Empathize, Define, Ideate, Prototype, Test)Self-learning Topics: Design thinking case studies from various domains https://www.design-thinking-association.org/explore- design-thinking-topics/external-links/design-thinking- case-study-index	05	L1, L2

Π	Empathy	Empathy:Foundation ofempathy, Purpose of empathy, Observation for empathy, User observation technique, Creation of empathy mapSelf-learning Topics:Creation of empathy maps	05	L2, L3
		https://www.interaction-		
		design.org/literature/topics/empathy-mapping	0.5	
	Define	Define: Significance of defining a problem, Rules of prioritizing problem solving, Conditions for robust problem framing, Problem statement and POV	05	L2, L3
		Self-learning Topics:		
		Creating a Persona – A step-by-step guide with tips and examples		
		https://uxpressia.com/blog/how-to-create-persona-guide- examples		
IV	Ideate	Ideate: What is ideation? Need for ideation, Ideation techniques, Guidelines for ideation: Multi-disciplinary approach, Imitating with grace, Breaking patterns, Challenging assumptions, Looking across value chain, Looking beyond recommendation, Techniques for ideation: Brainstorming, Mind mapping	05	L3
		Self-learning Topics: How To Run an Effective Ideation Workshop: A Step-By-Step Guide https://uxplanet.org/how-to-run-an-effective-ideation- workshop-a-step-by-step-guide-d520e41b1b96		
V	Prototype	Prototype: Low and high-fidelity prototypes, Paper prototype, Story board prototype, Scenario prototype	03	L6
VI	Test	Test: 5 guidelines of conducting test, The end goals of test: Desirability, Feasibility and Viability, Usability testing	03	L4, L5

Textbooks:

- 1. Design Your Thinking: The Mindsets, Toolsets, and Skill Sets for Creative Problem-solving, Pavan Soni, Penguin Random House India Private Limited
- 2. Design Thinking: Methodology Book, Emrah Yayichi, 2016
- 3. Handbook of Design Thinking: Christian Mueller-Roterberg, 2018

Reference books:

- 1. Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School, Idris Mootee, Wiley, 2013
- 2. Change by Design, Tim Brown, Harper Business, 2009

Online Resources:

Sr. No.	Website Name			
5.	Design Thinking and Innovation by Ravi Poovaiah			
	https://onlinecourses.swayam2.ac.in/aic23_ge17/preview_			
6.	Introduction to Design Thinking by Dr. Rajeshwari Patil, Dr. Manisha Shukla, Dr.			
	Deepali Raheja, Dr. Mansi Kapoor			
	https://onlinecourses.swayam2.ac.in/imb24_mg37/preview_			
3.	Usability Testing			
	https://www.interaction-design.org/literature/topics/usability-testing			

List of Experiments.

The experiments are to be performed in groups. A practical batch may be divided into groups of 4-5 students.

Sr No	List of Experiments	Hrs			
01	Customer Journey Mapping: Visualize the steps users take to interact with a product or service. Map out the customer journey from discovering a product to making a purchase and using the product. Identify pain points and opportunities for improvement.	2			
02	Stakeholder mapping: Identify all relevant stakeholders in a project. Create a stakeholder map, categorizing stakeholders based on their influence and interest. Include management of relationships with key stakeholders.				
03	"How Might We" Problem Framing: Transform user insights into actionable problem statements. After empathizing with users, turn challenges into "How Might We" statements that define the problem without prescribing a solution.				
04	Brainstorming Session: Generate a pool of ideas in a creative, non-judgmental environment. Using ideation techniques like mind mapping and brainwriting, students brainstorm as many solutions as possible to their "How Might We" problem statements.	2			
05	Affinity Diagramming: Organize group ideas to find patterns and insights. After brainstorming, students will categorize their ideas into themes by placing sticky notes on a wall and moving them into groups based on similarities.				
06	Rapid Prototyping: Create quick, low-fidelity versions of solutions. Use materials like paper, cardboard, and markers to build a prototype of their solution within 30 minutes. The focus is on speed and functionality, not aesthetics.				
07	Wireframing: Create a visual guide for digital interfaces for mobile app / web app for the problems identified in earlier lab sessions. Students will sketch wireframes of the user interface for their product or service. Use tools like Balsamiq or paper and pen for low-fidelity wireframes.	2			
08	Role-Playing: Walk through a prototype from the user's perspective. Students act as both users and designers, role-playing scenarios where they interact with their prototype (Developed in earlier lab sessions). Gather feedback from participants on how to improve the experience.	2			
09	Usability Testing: Evaluation of the effectiveness and user-friendliness of a prototype (developed in earlier lab sessions). Students will have peers or target users test their prototypes, observe how they interact with it, and collect feedback on any issues or improvements needed.				
10	Feedback Loop and Iteration: Refine solutions based on user feedback. After usability testing, students will refine their prototypes. Document changes made based on feedback and discuss how continuous iteration improves the design.	2			

Sr No	List of Assignments (Any two)		
01	Create an empathy map for a target user group. Break them into four sections: <i>Says, Thinks, Feels, and Does.</i> Interview users or research their experiences to fill in the map.	3	
02	Based on research, students will create user personas including demographic details, motivations, pain points, and goals. Each group will present their persona to the class.	3	
03	Consider 3 examples of real-life products which have good design and bad design. Write down reasons why do you think they are good or bad designs. May take user survey to support your work.	3	
04	Study any open-source design thinking tool and write a brief report about it.	3	

Assessment:

Term Work: Term Work shall consist of 08 to 10 lab activities based on the above list. Also, Term work journal must include any 2 to 4 assignments from the above list.

Term Work Marks: 50 Marks (Total marks) = 25 Marks (Experiment) + 10 Marks (Assignments) + 5 Marks (Attendance) + 10 Marks (Report).

Letter Grades and Grade Points:

Semester GPA/ Programme	% of Marks	Alpha-Sign/	Grading
CGPA Semester/Programme		Letter Grade Result	Point
9.00 - 10.00	90.0 - 100	O (Outstanding)	10
8.00 - < 9.00	80.0 - < 90.0	A+ (Excellent)	9
7.00 - < 8.00	70.0 - < 80.0	A (Very Good)	8
6.00 - < 7.00	60.0 - < 70.0	B+ (Good)	7
5.50 - < 6.00	55.0 - < 60.0	B (Above	6
		Average)	
5.00 - < 5.50	50.0 - < 55.0	C (Average)	5
4.00 - < 5.00	40.0 - < 50.0	P (Pass)	4
Below 4.00	Below 40.0	F (Fail)	0
Ab (Absent)	-	Ab (Absent)	0

Sd/-

Dr. Vaishali D. Khairnar BoS-Chairman-Information Technology Faculty of Technology Dr. Deven Shah Associate Dean

Faculty of Science & Technology

Sd/-

Sd/-

Prof. Shivram S. Garje Dean Faculty of Science & Technology