AC-Item No. -

UNIVERSITY OF MUMBAI

Program: Bachelor of Engineering in Electronics & Computer Science

Second Year with Effect from AY 2020-21 Third Year with Effect from AY 2021-22 Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20 Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

AC -

Item No. -

UNIVERSITY OF MUMBAI

Svllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	Third Year BE in Electronics & Computer Science
2	Eligibility for Admission	Second Year Engineering passed in line with the Ordinance 0.6243
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6243
5	No. of Years / Semesters	8 Semesters
6	Level	Certificate/Diploma/UG/PG (Strike out which is not applicable)
7	Pattern	Semester/ Yearly (Strike out which is not applicable)
8	Status	Revised/ New (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2021-2022

Date: Signature:

Dr. S. K. UkarandeAssociate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this, the Faculty of Science and Technology (in particular Engineering), of University of Mumbai, has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes, understand the depth and approach of the course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process. However, content of courses is to be taught in 12-13 weeks and the remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum was more focused on providing information and knowledge across various domains of the said program, which led to heavily loading students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of the entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum, skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of the curriculum proposed in the present revision is in line with the AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. UkarandeAssociate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha MuzumdarDean
Faculty of Science and Technology
University of Mumbai

Incorporation and implementation of online contents from NPTEL/ SWAYAM Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time, in particular Revised syllabus of 'C 'scheme, wherever possible, additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In earlier revisions of the curriculum in the years 2012 and 2016, in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum, overall credits are reduced to 171, to provide opportunity of self-learning to learner. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HOD's/ Faculties of all the institutes are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses and on successful completion, they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. UkarandeAssociate Dean
Faculty of Science and Technology
University of Mumbai

Dr Anuradha MuzumdarDean
Faculty of Science and Technology
University of Mumbai

Preface

Technical education in the country is undergoing a paradigm shift in current days. Think tank at national level are deliberating on the issues, which are of utmost importance and posed challenge to all the spheres of technical education. Eventually, impact of these developments was visible and as well adopted on bigger scale by almost all universities across the country. These are primarily an adoption of CBCS (Choice base Credit System) and OBE (Outcome based Education) with student centric and learning centric approach. Education sector in the country, as well, facing critical challenges, such as, the quality of graduates, employability, basic skills, ability to take challenges, work ability in the fields, adoption to the situation, leadership qualities, communication skills and ethical behaviour. On other hand, the aspirants for admission to engineering programs are on decline over the years. An overall admission status across the country is almost 50%; posing threat with more than half the vacancies in various colleges and make their survival difficult. In light of these, an All India Council for Technical Education (AICTE), the national regulator, took initiatives and enforced certain policies for betterment, in timely manner. Few of them are highlighted here, these are design of model curriculum for all prevailing streams, mandatory induction program for new entrants, introduction of skill based and inter/cross discipline courses, mandatory industry internships, creation of digital contents, mandate for use of ICT in teaching learning, virtual laboratory and so on.

To keep the pace with these developments in Technical education, it is mandatory for the Institutes & Universities to adopt these initiatives in phased manner, either partially or in toto. Hence, the ongoing curriculum revision process has a crucial role to play. The BoS of Electronics Engineering under the faculty of Science & Technology, under the gamut of Mumbai University has initiated a step towards adoption of these initiatives. We, the members of Electronics Engineering Board of Studies of Mumbai University feel privileged to present the revised version of curriculum for Electronics & Computer Science program to be implemented from academic year 2020-21. Consent was also extended by BoS Computer Science for this curriculkum. Some of the highlights of the revision are;

- i. Curriculum has been framed with reduced credits and weekly contact hours, thereby providing free slots to the students to brain storm, debate, explore and apply the engineering principles. The leisure provided through this revision shall favour to inculcate innovation and research attitude amongst the students.
- ii. New skill based courses have been incorporated in curriculum keeping in view AICTE model curriculum.
- iii. Skill based Lab courses have been introduced, which shall change the thought process and enhance the programming skills and logical thinking of the students
- iv. Mini-project with assigned credits shall provide an opportunity to work in a group, balancing the group dynamics, develop leadership qualities, facilitate decision making and enhance problem solving ability with focus towards socio-economic development of the country. In addition, it shall be direct application of theoretical knowledge in practice, thereby, nurture learners to become industry ready and enlighten students for Research, Innovation and Entrepreneurship thereby to nurture start-up ecosystem with better means.
- v. An usage of ICT through NPTEL/SWAYAM and other Digital initiatives of Govt. of India shall be encouraged, facilitating the students for self learning and achieve the Graduate Attribute (GA) specified by National Board of accreditation (NBA) i.e. lifelong learning.

Thus, this revision of curriculum aimed at creating deep impact on the teaching learning methodology to be adopted by affiliating Institutes, thereby nurturing the students fraternity in a multifaceted directions and create competent technical manpower with legitimate skills. In time to come, these graduates shall shoulder the responsibilities of proliferation of future technologies and support in a big way for 'Make in India' initiative a reality. In the process, BoS, Electronics Engineering got whole hearted support from all stakeholders including faculty, Heads of department of affiliating institutes, experts faculty who detailed out the course contents, alumni, industry experts and university official providing all procedural support time to time. We put on record their involvement and sincerely thank one and all for contribution and support extended for this noble cause.

Boards of Studies in Electronics Engineering

Sr. No.	Name	Designation	Sr. No.	Name	Designation
1	Dr. R. N. Awale	Chairman	5	Dr. Rajani Mangala	Member
2	Dr. Jyothi Digge	Member	6	Dr. Vikas Gupta	Member
3	Dr. V. A. Vyawahare	Member	7	Dr. D. J. Pete	Member
4	Dr. Srija Unnikrishnan	Member	8	Dr. Vivek Agarwal	Member

Semester V

Course Code	Course Name		ching Scho ontact Hou		Credits Assigned			
		TH	PR	Tut	TH	Pract	Tut	Total
ECC 501	Communication Engineering	3	-	-	3	-	-	3
ECC 502	Computer Organization and Architecture	3	-	-	3	-	-	3
ECC 503	Software Engineering	3	-	-	3	-	-	3
ECC 504	Web Technologies	3	-	-	3	-	-	3
ECC DO501	Department Optional (Course - I)	3	-	-	3	-	-	3
ECL501	Communication Engineering Lab	-	2			1		1
ECL502	Software Engineering and Web Technologies Lab	-	2	-	-	1	-	1
ECL503	Department Optional (Course - I) Lab	-	2	-	-	1	-	1
ECL504	Professional Communication and Ethics-II	-	4	-	-	2	-	2
ECM501	Mini project - 2A	-	4\$	-	-	2	-	2
	Total	15	14	-	15	7	-	22

^{*}Theory class; \$ indicates workload of learner(Not faculty), for mini-project

Course Code	Course Name				Examina	tion Scheme			
		Intern	al Assessr	nent	End Sem	Exam Duration	TW	Pract/	Total
		Test 1	Test 2	Av	Exam	(in Hrs)	1 **	Oral	Total
ECC 501	Communication Engineering	20	20	20	80	03	-	-	100
ECC 502	Computer Organization and Architecture	20	20	20	80	03	-	-	100
ECC 503	Software Engineering	20	20	20	80	03	-	-	100
ECC 504	Web Technologies	20	20	20	80	03	-	-	100
ECC DO501	Department Level Optional Course - I	20	20	20	80	03	-	-	100
ECL501	Communication Engineering Lab	-	- .	-	-	-	25	25	50
ECL502	Software Engineering and Web Technologies lab	-	-	-	-	-	25	25	50
ECL503	Department Optional Course -I lab	-	-	-	-	-	25	25	50
ECL504	Professional Communication and Ethics-II	-	-	-	-	-	25	25	50
ECM501	ECM501 Mini project - 2A						25	25	50
	Total			100	400	-	150	100	750

Department Level Optional Course - I (DO 501):

1. Software Testing and Quality Assurance	3. Information Theory and Coding
2. ASIC Verification	4. Sensors and Applications

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC 501	Communication Engineering	03	02		03			03	

Subject Code	Subject Name	Examination Scheme										
		Theory Marks						Pra				
Code		Internal assessment			End	Exam	Term Work	ctic	Oral	Total		
		Test 1	Test 2	Avg. of Test 1 and Test 2	Sem. Exam	duration Hours		al				
ECC 501	Communication Engineering	20	20	20	80	03	1	1		100		

Course Pre-requisite:

- ECC 301 Applied Mathematics-III
- ECC 401 Applied Mathematics-IV
- ECC 303 Digital Electronics
- ECC 302 Electronic Devices

Course Objectives:

- 1. To understand and analyse the need for various analog modulation techniques
- 2. To analyse the characteristics of the receivers
- 3. To understand pulse modulation methods
- 4. To understand the effect of ISI in Baseband transmission of a digital signal
- 5. To analyse various Digital modulation techniques

Course Outcomes:

- 1. Analyse various analog modulation methods.
- 2. Explain various pulse modulation techniques.
- 3. Evaluate the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect.
- 4. Compare various Digital modulation methods based on spectral efficiency, Euclidean distance etc
- 5. Analyse the characteristics of radio receivers

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Electronic Communication	04
	1.1	Electromagnetic Spectrum	
	1.2	Block diagram of Analog communication system	_
	1.3	Need for modulation	1
	1.4	Types of Noise, Signal-to-noise ratio, Noise factor, Noise Figure, Noise Temperature	
2		Analog Modulation Systems	12
	2.1	Principle of Amplitude Modulation (AM): Representation of AM wave (Mathematical & Graphical), Frequency spectrum of AM wave, AM Power Distribution, AM for a Complex Modulating Signal	
	2.2	Types of AM: Generation of DSB-SC using diode based balanced modulator, Generation of SSB using phase shift method	
	2.3	Principles of Angle Modulation: Theory of Frequency Modulation (FM) & Phase Modulation (PM) - Basic Concepts, Spectrum Analysis of FM Wave, Noise triangle, Pre-emphasis, De-emphasis	
	2.4	Comparison of AM, FM and PM	
3		Radio Transmitters and Receivers	04
	3.1	Radio Transmitters: Block diagram of AM & FM transmitters	
	3.2	Radio receivers: Receiver Characteristics, Superheterodyne Receiver, diode	
		detector, Automatic gain control (AGC), Automatic frequency control (AFC)	
4		Pulse Modulation	05
	4.1	Sampling theorem and quantization of signals	
	4.2	Generation and Detection of Pulse Amplitude Modulation (PAM)	
	4.3	Pulse Code Modulation (PCM), and Delta Modulation (DM)	
	4.4	Multiplexing Techniques: Time Division Multiplexing (TDM):T1 carrier system, Frequency Division Multiplexing (FDM)	,
5		Pulse Shaping for Optimum Transmission	04
	5.1	Line codes and their desirable properties, PSD of digital data	
	5.2	Concept of Inter symbol interference (ISI), Eye diagram: Quality Factor and BER, Nyquist Bandwidth	
	5.3	Types of equalizers: Linear equalizer	
	5.4	Correlative coding: Duo-binary encoding and modified duo-binary encoding	
6		Digital Modulation Techniques	10
	6.1	Bandpass digital transmitter and receiver model	
	6.2	Generation, detection, signal space diagram, power spectral density and spectrum efficiency analysis of: Binary Phase Shift Keying (BPSK), Quaternary Phase Shift Keying (QPSK), M-ary PSK, Binary Amplitude Shift Keying (BASK), Quadrature Amplitude Modulation (QAM), Binary Frequency Shift Keying (BFSK), Minimum Shift Keying (MSK).	
		Total	39

1. Simon Haykin, "Communication System", John Wiley And Sons ,4th Ed

- 2. Taub Schilling & Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed
- 3. Kennedy and Davis "Electronics Communication System", Tata McGraw Hill
- 4. T. L. Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 5. Sklar B, and Ray P. K., "Digital Communication: Fundamentals and Applications," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.

Reference Books:

- 1. Bernad Sklar,- "Digital communication", Pearson Education, 2nd Ed.
- 2. Simon Haykin, "Digital communication", John Wiley and sons
- 3. Wayne Tomasi, "Electronics Communication Systems" Pearson Education, Third Edition, 2001.
- 4. R P Singh &S. Sapre, "Analog and Digital Communication", Tata McGraw Hill 2nd Ed.
- 5. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Fourth Edition, 2014.
- 6. Proakis & Salehi, "Communication System Engineering", Pearson Education.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC 502	Computer Organization and Architecture	03		1	03			03	

		Examination Scheme										
			7	Theory Ma								
Subject Code	Subject Name	Internal assessment			End	Exam	Term	Pra ctic	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exa m	durati on Hours	Work	al	Orai	Total		
ECC 502	Computer Organization and Architecture	20	20	20	80	03	-			100		

Course Pre-requisite:

- 1. Digital Electronics
- 2. Fundamental concepts of processing
- 3. Data structures

Course Objectives:

- 1. To introduce the learner to the design aspects which can lead to maximized performance of a Computer.
- 2. To introduce basic concepts and functions of operating systems.
- 3. To understand the concepts of process synchronization and deadlock.
- 4. To understand various Memory, I/O and File management techniques
- 5. To introduce the learner to various concepts related to Parallel Processing
- 6. To highlight the various architectural enhancements in modern processors.

- 1. Define the performance metrics of a Computer
- 2.Explain the design considerations of Processor, Memory and I/O in Computer systems
- 3.Interpret the objectives and functions of an Operating System
- 4 Analyze the concept of process management and evaluate performance of process scheduling algorithms
- 5. Evaluate the advantages and limitations of Parallelism in systems
- 6. Discuss the various architectural enhancements in modern processors

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Computer Organization	02
	1.1	Fundamental Units of a Computer, Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and MFlops	
•	1.2	Number Representation methods- Integer and Floating-point	
2		Processor Organization and Architecture	05
	2.1	CPU Architecture, Register Organization, Instruction cycle, Instruction Formats	
	2.2	Control Unit Design- Hardwired and Micro-programmed Control: Vertical and Horizontal Micro-Instructions, Nano-programming	
	2.3	Comparison between CISC and RISC architectures	
3		Memory and I/O Organization	09
	3.1	Classification of Memories-Primary and Secondary Memories, ROM and RAM, Memory Inter- leaving	
	3.2	Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write Policies, Cache Coherency	
	3.3	Virtual Memory Management-Concept, Segmentation, Paging, Page Replacement policies	
	3.4	Types of I/O devices and Access methods, Types of Buses, Bus Arbitration	15
4		Operating System concepts	
	4.1	Concept of a Process, Process States, Process Description, Process Control Block	
	4.2	Process scheduling -Pre-emptive and Non pre-emptive scheduling algorithms (FCFS, Priority, SJF), Concept of Multi-Threading	
	4.3	Inter-Process Communication, Process Synchronization, Deadlock and Prevention	
	4.4	File Management -File Organization and Access	
	4.5	I/O Management and Disk Scheduling: FCFS, SSTF	
5		Parallelism	04
	5.1	Introduction to Parallel Processing Concepts, Flynn's classification, Amdahl's law	
	5.2	Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline hazards and solutions	3
6		Architectural Enhancements	04
		Superscalar Architectures, Out-of-Order Execution, Multi-core processors, Clusters, GPU	
		m ()	20
		Total	39

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.
- 3. William Stallings, Operating System: Internals and Design Principles, Prentice Hall, 8th Edition
- 4. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, John Wiley &Sons, Inc., 9th Edition,

Reference Books:

- 1. P. Hayes, "Computer Architecture and Organization", McGraw-Hill,1998.
- 2. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- 3. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design The Hardware/Software Interface", MorganKaufmann,1998.
- 4. Achyut Godbole and Atul Kahate, Operating Systems, McGraw Hill Education, 3rd Edition
- 5. Andrew Tannenbaum, Operating System Design and Implementation, Pearson, 3rd Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC 503	Software Engineering	03			03			03	

Subject Code	Subject Name			Exa	Examination Scheme							
Code	Name			Theory M	Iarks							
		Inte	Internal assessment									
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Term Work	Practical	Oral	Total		
ECC 503	Software Engineering	20	20	20	80	03				100		

Course Pre-requisites:

- 1. Knowledge of Software Application Domains, Software Engineering Practices.
- 2. Knowledge of any Programming Language

Course Objectives:

- 1. To learn the basics of software engineering and software development process models, agile software development and other agile practices.
- 2. To Identify, Specify, analyse Software Requirements and prepare model.
- 3. To understand concepts and principles of software design and Development.
- 4. To learn about Project Scheduling concept and Software Cost Estimation Techniques.
- 5. To understand concept of software quality assurance and Risk Management.
- 6. To learn different software testing strategies and tactics.

Course Outcomes:

- 1. Apply software engineering concept and choose process models for a software project development.
- 2. Analyse and specify software requirement specification (SRS) for software system.
- 3. Convert requirement model into the design model and demonstrate the use of software and user-interface design principles.
- 4. Generate the project schedule and estimate the cost of software system.
- 5. Identify risks and prepare RMMM plan for quality software system.
- 6. Apply testing strategies and tactics for software system.

Module No.	Unit No.	Contents	Hrs.					
		Introduction to Software Engineering and Process Models						
	1.1	Nature of Software, Software Process framework						
		Prescriptive Models: Waterfall Model, Incremental, RAD Models Evolutionary						
1	1.2	Process Models: Prototyping, Spiral and Concurrent Development Model.	7					
		Specialized Models: Component based	-					
	1.3	Agile process, Agility Principles, Extreme Programming (XP), Scrum.						
		Requirement Engineering and Modelling						
	2.1	Types of Requirements, Requirement Engineering Task, Software Requirement						
2		Specification (SRS), Developing Use Cases (UML)	8					
	2.2	Requirement Model: Scenario-based model, Class-based model, Behavioural						
		model.						
3 Design Engineering 3 Design Concepts, Design Principles Architecture Design, Component Level Design, System Level Design, User Interface Design								
3	3.1							
	3 2		6					
	J.2							
		Project scheduling & Cost Estimation						
	4.1	Project Scheduling, defining a Task Set for the Software Project, Gantt charts,						
	1.1	Program Evaluation Review Techniques (PERT), Tracking the Schedule						
4		Software Project Estimation, Decomposition Techniques, LOC based, FP based						
	4.2	and Use case-based estimations, Empirical estimation Models. COCOMO II						
		Model.						
		Software Risk & Quality Management						
_	5.1	Software Risk, Types of Risk, Risk Identification, Risk Assessment, Risk						
5		Projection, RMMM.	6					
	5.2	Software Quality Assurance Task and Plan, McCall's Quality Factors, Software						
		Reliability, Formal Technical Review (FTR), Walkthrough						
		Software Testing Strategies and Tactics						
		Software Testing Fundamentals, Testing strategies for conventional and Object-	6					
	6.1	Oriented architectures, Unit testing, Integration testing, System Testing,						
6		Validation and System Testing.						
		Tacting Tactice: White Roy Tacting Pages Dath Tacting Control Standards						
	6.2	Testing Tactics: White-Box Testing, Basis Path Testing, Control Structure Testing, Black-Box Testing.						
			20					
		Total	39					

- 1. Roger S Pressman "Software Engineering: A Practitioner's Approach" 8th Edition McGraw-Hill, ISBN:978-0-07-802212-8
- 2. Pankaj Jalote, "An integrated approach to Software Engineering", Springer/Narosa

Reference Books:

- 1. Ian Sommerville, "Software Engineering", Pearson Education (9th edition)
- 2. Jibitesh Mishra and Ashok Mohanty, "Software Engineering", Pearson edition
- 3. Rajib Mall, "Fundamentals of Software Engineering", Prentice Hall India
- 4. Hans Van Vilet, "Software Engineering Principles and Practice" 3rd edition Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus where in sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme				Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC504	Web Technologies	03	02		03			03

		Examination Scheme										
Subject	Subject Name	Theory Marks										
Code		Internal assessment			End	Exam	Term Work	Prac tical	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	VVOIR	treur				
ECC504	Web Technologies	20	20	20	80	03			-	100		

Course Pre-requisite: Basics of programming languages, basic knowledge of HTML

Course Objectives:

- 1. To design and create web pages using HTML5 and CSS3.
- 2. To implement client-side scripting to static web pages.
- 3. To create dynamic web pages using server-side scripting.
- 4. To use MVC framework for web application development.

Course Outcomes:

- 1. Design static web pages using HTML5.
- 2. Design the layout of web pages using CSS3.
- 3. Apply the concepts of client-side validation and scripts to static web pages using JavaScript and JQuery.
- 4. Build responsive web pages using front-end framework Bootstrap.
- 5. Build dynamic web pages using server -side scripting.
- 6. Develop a web application using appropriate web development framework.

	Unit		Hrs.
Module	No.	Contents	
1		Introduction to HTML5	
1	1.1	Basic structure of an HTML5 document, Creating an HTML5 document,	4
	1.1	Mark up Tags, Heading-Paragraphs, line Breaks	
		HTML5 Tags - Introduction to elements of HTML, Working with Text, Lists,	
		Tables and Frames, Hyperlinks, Images and Multimedia, Forms and other	
		HTML5 controls.	
	1.2	Self-Learning: HTML5 based game development	-
	1.2	Sen-Learning, 111 WLS based game development	
2		Static Web Page Design	
	2.1	Concept of CSS, Creating Style Sheet, CSS Properties, CSS Styling	4
		(Background, Text Format, Controlling Fonts), Working with block elements	
		and objects, Lists and Tables, CSS Id and Class, Box Model(Introduction,	
		Border properties, Padding Properties, Margin properties)	
		CSS Advanced: (Grouping, Dimension, Display, Positioning, Floating, Align,	
	2.2	Pseudo class, Navigation Bar, Image Sprites, Attribute sector)	-
	2.2	Self-Learning: Creating page Layout and Site Designs	
3		Client-side scripting	
	3.1	JavaScript	
		Introduction to JavaScript, Lexical Structure, Types, Values, Variables,	
		Expressions and Operators, Statements, Objects, Arrays, Functions, Pattern	6
		matching with regular expressions, JavaScript in Web Browsers, The Window	
		object, Scripting Documents, Scripting CSS, Handling Events	
	3.2	jQuery	
		jQuery Basics, jQuery Getters and Setters, Altering Document	4
		Structure, Handling events with jQuery, Animated Effects, Utility functions,	
		jQuery Selectors and Selection Methods, Extending jQuery	
	3.3	with Plug-ins, The jQuery UI Library Self-Learning: JavaScript Framework -AngularJS	
	3.3	Sen-Learning, JavaScript Planiework -Angularis	
4		Bootstrap	
	4.1	Introduction to Bootstrap, downloading and installing Bootstrap.	6
		The Grid System : Introducing the Grid, Offsetting and Nesting, Responsive	
		Features, Utility Classes, and Supported Devices.	
		CSS Foundations: Typography in Bootstrap, Styling Tables, Styling Forms,	
		Styling Buttons, Images, icons, and Thumbnails.	
		Navigation Systems : Tabs, Pills, and Lists, Breadcrumbs and Pagination, Navigation Bar, Making the Navigation Bar Responsive.	
		JavaScript Effects: Drop-downs, Modal Windows, Tooltips and Popovers,	
		Navigation Aids: Tabs, Collapse, Affix, Carousel.	
	4.2	Self-Learning: Bootstrap Customization: Combining Elements in Bootstrap,	
		Customizing by Components, Plugins, and Variables	
5		Server side-scripting	
3	5.1	Introduction to PHP, PHP Tags, Adding Dynamic content, Accessing form	10
	J.1	variables, Identifiers, user-declared variables, Data types, Constants,	10

		Operators, Control structures, Conditionals, Iteration constructs, Using arrays, string manipulation and regular expressions, reusing code and writing functions, Designing and creating your web database, Accessing MySQL									
		database from the Web with PHP, Session Control in PHP.									
	5.2	Self-Learning: PHP-NoSQL Database connectivity e.g. PHP-MongoDB connectivity									
6		Web Development Framework									
	6.1	MVC architecture - Introduction and applications	5								
	Server side-scripting – Laravel Framework										
		Managing Your Project Controllers, Layout, Views, and Other Assets, Talking									
		to the Database, Model Relations, Scopes, and Other Advanced Features,									
		Integrating Web Forms, Authenticating and Managing Your Users,									
		Deploying, Optimizing and Maintaining Your Application									
	6.2	Self-learning: Django Framework, Interactive web sites, web-based									
		information system, blogs, social networking sites,									
		Total	39								

- 1. Ralph Moseley, M.T. Savliya, "Developing Web Applications", Willy India, Second Edition,
- 2. "Web Technology Black Book", Dreamtech Press, First Edition, 978-7722-997
- 3. Robin Nixon, "Learning PHP, MySQL, JavaScript, CSS & HTML5" Third Edition,O'REILLY,2014.(http://www.ebooksbucket.com/uploads/itprogramming/javascript/Learning_PHP_MySQL_Javascript_CSS_HTML5__Robin_Nixon_3e.pdf)
- 4. Professional Rich Internet Applications: AJAX and Beyond, Dana Moore, Raymond Budd, Edward Benson, Wiley publications. https://ebooks-it.org/0470082801-ebook.htm
- 5. Jennifer Kyrnin, "SAMS Teach Yourself Bootstrap in 24 hours", 1st edition, Pearson Education.
- 6. Martin Bean, "Laravel 5 Essentials", PACKT Publishing Ltd

Reference Books:

- 1. Harvey & Paul Deitel& Associates, Harvey Deitel and Abbey Deitel, "Internet and World Wide Web How To Program", Fifth Edition, Pearson Education, 2011.
- 2. Achyut S Godbole and Atul Kahate, "Web Technologies", Second Edition, Tata McGraw Hill, 2012
- 3. Thomas A Powell, Fritz Schneider, "JavaScript: The Complete Reference", Third Edition, Tata McGraw Hill, 2013.
- 4. David Flanagan, "JavaScript: The Definitive Guide, Sixth Edition", O'Reilly Media, 2011
- 5. Steven Holzner, "The Complete Reference PHP", Tata McGraw Hill, 2008
- 6. Mike Mcgrath, "PHP & MySQL in easy Steps", Tata McGraw Hill, 2012.
- 7. J. Millman and A. Grabel, "Head First HTML and CSS", 2nd edition, O" Reilly.
- 8. Ben Frain, "Responsive Web design with HTML5 and CSS3", PACKT Publishing Ltd.
- 9. L. Welling and L. Thomson, "PHP and MySQL Web Development", 4th edition, Adison Wesley Professional.

Digital Material:

- 1. www.nptelvideos.in
- 2. www.w3schools.com
- 3. http://spoken-tutorial.org

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teaching Scheme			Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ECCDO501	Software Testing & Quality Assurance	03		1	03	1		03		

	Subject Name	Examination Scheme											
Subject				Theory Mark		Practi cal/Or	Ora 1						
Code		Internal assessment			End			Exam	Term Work	Total			
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours		al					
ECCDO501	Software Testing & Quality Assurance	20	20	20	80	03				100			

Course Pre-requisite: Programming Language (C++, Java), Software Engineering

Course Objectives:

- 1. To provide students with knowledge in Software Testing techniques.
- 2. To provide knowledge of Black Box and White Box testing techniques.
- 3. To provide skills to design test case plans for testing software.
- 4. To prepare test plans and schedules for testing projects.
- 5. To understand how testing methods can be used in a specialized environment.
- 6. To understand how testing methods can be used as an effective tool in providing quality assurance concerning software.

Course Outcomes:

- 1. Investigate the reason for bugs and analyse the principles in software testing to prevent and remove bugs.
- 2. Understand various software testing methods and strategies.
- 3. Design test planning.
- 4. Manage the test process.
- 5. Apply the software testing techniques in the commercial environment.
- 6. Use practical knowledge of a variety of ways to test software and quality attributes

Module No.	Unit No.	Contents	Hrs.						
1		Testing Methodology	8						
	1.1	Introduction to Software Testing: Introduction, Goals of Software Testing, Software Testing Definitions, Model for Software Testing, Effective Software Testing vs Exhaustive Software Testing, Software Failure Case Studies							
	1.2	Software Testing Terminology and Methodology: Software Testing Terminology, Software Testing Life Cycle (STLC), Software Testing methodology							
	1.3	Verification and Validation: Verification, Verification requirements, Validation							
2		Testing Techniques	9						
	2.1	Black Box testing: boundary value analysis, equivalence class testing, state table-based testing, cause-effect graphing based testing, error guessing.							
	2.2	White box Testing Techniques: need, logic coverage criteria, basis path testing, graph matrices, loop testing, data flow testing, mutation testing, Static Testing.							
2.3 Validation Activities: Unit validation, Integration, Function, System Acceptance Testing.									
	2.4	Regression Testing: Progressive vs. Regressive							
3		Managing the Test Process	7						
	3.1	Test Management: test organization, structure and of testing group, test planning, detailed test design and test specification.							
	3.2	Software Metrics: need, definition and classification of software matrices.							
	3.3	Efficient Test Suite Management: minimizing the test suite and its benefits							
4		Test Automation	4						
	4.1	Automation and Testing Tools: need, categorization, selection and cost in testing tool,							
	4.2	Guidelines for testing tools.							
5		Testing for specialized environment	5						
	5.1	Agile Testing, Agile Testing Life Cycle, Challenges in Agile Testing							
	5.2	Testing Object-Oriented Software: OOT Basics, Object-oriented Testing							
6		Quality Management	6						
	6.1	Software Quality Management, McCall's quality factors and Criteria							
	6.2	ISO9000:2000, SIX Sigma							
		Total	39						

- 1. Software Testing Principles and Practices, Naresh Chauhan, Oxford Higher Education
- 2. Software Testing and quality assurance theory and practice, Kshirasagar Naik, Priyadarshi Tripathy, Wiley Publication

Reference Books:

- 1. Effective Methods for Software Testing, Willam E. Perry, Wiley Publication, third edition
- 2. Software Testing Concepts and Tools, Nageswara Rao Pusuluri, Dreamtech press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on the entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	aching Scho	eme	Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ECC DO501	ASIC Verification	03		-	03	-1		03		

	Subject Name	Examination Scheme											
Subject		Theory Marks											
Code		Internal assessment			End Exam		Term Work	Practi cal/	Oral	Total			
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours		Oral					
ECC DO501	ASIC Verification	20	20	20	80	03			1	100			

Course Pre-requisite:

Digital Electronics (ECC 303)

Course Objectives:

- 1. To introduce the learner System Verilog concepts for verification.
- 2. To provide understanding of System Verilog and SVA for verification, and understand the improvements in verification efficiency.
- 3. To introduce the learner advanced verification features such as practical use of classes, randomization, checking and coverage.
- 4. To highlight the significance of verification in VLSI industry.

Course Outcomes:

- 1. Demonstrate an understanding of programmable devices and verification methodologies.
- 2. Exploit new constructs in System Verilog.
- 3. Summarize ASIC verification techniques such as Randomization, assertions, coverage etc.
- 4. Create layered test benches for digital designs in system Verilog.
- 5. Carry out verification of design successfully using simulators.

Module No.	Unit No.	Contents	Hrs.
1		Programmable Devices and Verification Basics	7
	1.1	Programmable Devices: Different types of Integrated Circuits- CPLD, FPGA, ASIC, SoC (System-on-Chip), SiP (System-in-Package), MCM (Multi-Chip Module), SoP (System-on-Package), Choices based on application and cost, Architecture of FPGA, CPLD (Xilinx and Altera family devices), Difference between ASIC, FPGA and CPLD, ASIC flow and overview of types of tools used in each stage of lifecycle	,
	1.2	Verification Basics: Introduction, Verification Process, Verification Plan, Verification Methodology options, Basic Testbench Functionality, Directed Testing, Constrained-Random Stimulus, Functional Coverage, Testbench Components, Layered Testbench, Technology challenges test, Verification languages, Verification IP reuse, Verification approaches.	L
2	2.1	Data types, Procedural statements, Connecting the Test bench and Design Data Types: Built-in Data Types, Logic Data type, Fixed-Size Arrays (Packed and Unpacked arrays), Dynamic Arrays, Queues, associative array, array methods – Reduction, Locator & ordering, Creating New Types with typedef, Creating User-Defined Structures, Enumerated Types, Constants, Strings,	
		Expression width. Procedural statements: Procedural Statements, Tasks, Functions, and Void Functions, routine arguments, returning from a routine, Time values.	-
		Connecting the Test bench and Design: Separating the test-bench and design. The Interface construct, Grouping Signals in an Interface using Modports, Creating Interface Monitor, Stimulus timing with Clocking Block, Test-bench design Race Condition, Program Block, Connecting it all together, Top level Scope, Program-Module interactions.	L
3		Basic Object -Oriented Programming	6
	3.1	OOP : Class, Creating new objects, Where to Define a Class, OOP Terminology, Understanding Dynamic objects, Object Deallocation, using objects, Static vs Global Variables, Class methods, Defining methods outside class, Scoping rules, Using one class inside another, Understanding Dynamic objects, Copying objects, public vs. local, Building a test-bench	- -
4		Randomization and Inter-process Communication	7
		Randomization: Randomization in system Verilog, Constraint details, Solution probabilities, Controlling multiple constraint blocks, Valid constraints, In-line constraints, The pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques. Threads and Inter-process Communication: Working with threads, disabling	
		threads, inter-process communication, Events, Semaphores, Mailboxes, building a test-bench with threads and IPC.	5
5		System Verilog Assertions and Functional Coverage	7
	5.1	System Verilog Assertions: Types of Assertions and examples, Immediate	

		Assertions, Concurrent Assertions, SVA Property and Sequences, Implication									
		(Overlapped & Non-Overlapped) Operator and Repetition Operator, System									
		Verilog Assertion built-in methods (\$rose, \$fell, \$stable, \$past)									
	5.2	Functional Coverage: Coverage Types, Functional Coverage Strategies,									
		Simple Functional Coverage Example, anatomy of a cover group, triggering a									
		cover group, data sampling, cross coverage, generic cover groups, Coverage									
		Options, Parameterized Cover Groups, Analysing Coverage Data, Measuring									
		Coverage Statistics During Simulation.									
6		System Verilog Test-bench Case studies	4								
	6.1	A complete System Verilog Layered Test-Bench for the simple design of									
		ADDER and Memory module- Test-Bench Architecture, Transaction Class,									
		Generator Class, Interface, Driver Class, Monitor, Scoreboard, Environment,									
		Test, Test Bench Top									
		Total	39								

- 1. Chris Spear, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 3rd Edition.
- 2. Janick Bergeron, "Writing Testbenches Using System Verilog", Springer 2006.
- 3. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design: A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.

Reference Books:

- 1. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "System Verilog Assertions Handbook", Vhdl Cohen Publishing, 3rd edition
- 2. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 3. System Verilog Language Reference manual
- 4. Samir Palnitkar, "Verilog HDL: A guide to Digital Design and Synthesis" second edition, Pearson IEEE 1364-2001 compliant.
- 5. Spartan and Virtex family user manuals from Xilinx
- 6. Verilog Language Reference manual

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC DO501	Information Theory and Coding	03			03	-	-	03

	Subject	Examination Scheme									
Subject Code				Theory Mark							
	Name	Internal assessment			End	Exam duratio	Term Work	Prac tical	Oral	Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	n Hours	WOIN	ilcai			
ECC DO501	Information Theory and Coding	20	20	20	80	03				100	

Course Pre-requisite:

Engineering Mathematics - IV ECC 401

Course Objectives:

- 1. To learn the principles and applications of information theory in communication systems.
- 2. To study various data compression methods.
- 3. To model the continuous and discrete communication channels.
- 4. To understand the theoretical framework upon which error-control codes are designed.

Course Outcomes:

- 1. Comprehend the significance of this quantitative measure of information in the communication systems.
- 2. Explain entropy, joint entropy, relative entropy, conditional entropy, and channel capacity of a system.
- 3. Obtain knowledge in designing various source codes and channel codes.
- 4. Differentiate between lossy and lossless compression techniques.
- 5. Analyze an efficient data compression scheme for a given information source.
- 6. Apply the concepts of multimedia communication.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Information Theory	07
	1.1	Introduction to Probability theory: Axiomatic definition of probability,	
		Bayes Theorem.	

	1.2	One random variable: Types of random variable, Discrete & Continuous,	
		PMF, PDF and Cumulative distribution Function, Conditional Probability,	
		Independent Event.	
	1.3	Two Random Variable: Discrete and Continuous, Joint probability density	
		function, Joint Distribution function, Marginal probabilities, joint	
		conditional probability.	
	1.4	Concept of amount of information, information units, Entropy: marginal,	
		conditional, joint and relative entropies.	
	1.5	Relation among entropies Mutual information, information rate.	0.5
2		Source Coding Techniques	06
	2.1	Block Diagram of Digital Communication system.	
	2.2	Encoding techniques, Purpose of encoding, Instantaneous codes,	
		Construction of instantaneous codes, Kraft's inequality, Coding efficiency	
		and redundancy	
	2.3	Source coding theorem. Construction of basic source codes: Shannon Fano coding.	
	2.4	Huffman codes, Extended Huffman coding, Arithmetic Coding, Lempel -	
	2,7	Ziv Algorithm-LZW	
3		Information Channels	06
3	3.1	Information Channels: Communication Channels	00
	3.2	Channel Models, Channel Matrix, Joint probability Matrix, Binary	
	3.2	Symmetric Channel, System Entropies, Mutual Information, Channel	
		Capacity	
	3.3	Discrete Memoryless channels: Binary Symmetric Channel (BSC), Channel	
		Capacity of BSC, redundancy and efficiency of channels.	
	3.4	Channel Capacity: Hartley – Shannon law.	
		Codes for error detection and correction	08
4	4.1	Parity check coding, Linear block codes, Error detecting and correcting	
		capabilities	
	4.2	Generator and Parity check matrices, Standard array and Syndrome	
		decoding, Hamming codes.	
	4.3	Cyclic codes: Generator polynomial, Generator and Parity check matrices,	
		Encoding of cyclic codes.	
	4.4	Syndrome computation and error detection, Decoding of cyclic codes.	0.5
5	F 4	Convolution Codes	06
	5.1	Encoding and State, Tree and Trellis diagrams.	
	5.2	Maximum likelihood decoding of convolution codes, Viterbi algorithm,	
	5. 2	Sequential decoding -Stack algorithm.	
	5.3	Interleaving techniques: Block and convolution interleaving.	0.5
6	(1	Audio and Video Coding	06
	6.1	Linear Predictive coding, code excited LPC, Perceptual coding, MPEG	
		audio coders, Dolby audio coders.	
	6.2	Video compression: Principles, Introduction to H.265& MPEG-4 Part 10	
		Video standards.	20
		Total	39

- 1. Simon Haykin, *Communication Systems*, 4th Edition, John Wiley and Sons.
- 2. Ranjan Bose, *Information theory*, *coding and cryptography*, 2nd Edition, Tata McGraw-Hill.
- 3. R. Togneri, C.J.S deSilva, Fundamentals of Information Theory and Coding Design, 1st Edition, Taylor and Francis.
- 4. Fred Halsall, *Multimedia Communications*, *Applications Networks Protocols and Standards*, Pearson Education, 1st Edition, Asia.

Reference Books:

- 1. Bernard Sklar, *Digital Communications Fundamentals and Applications*, 2nd Edition, Person Education Asia.
- 2. Taub and Schilling, *Principles of Communication Systems*, 2nd Edition, Tata McGraw-Hill.
- 3. Glover and Grant, *Digital Communication*, 2ndEdition, Pearson.
- 4. T. M. Cover, J. A. Thomas, *Elements of Information Theory*, 2nd Edition, Wiley.
- 5. Mark Nelson, *Data Compression Book*, 2nd Edition, BPB Publication.
- 6. Watkinson J, Compression in Video and Audio, 1st Edition, Focal Press, London.
- 7. R. J. McEliece, *The Theory of Information and Coding*, 1st Edition, Cambridge University Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.3.
- 4. Remaining questions will be selected from all the modules

Subject	Subject	Te	aching Sch	eme	Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC DO501	Sensors and Applications	03			03			03

	Subject Name	Examination Scheme								
Subject				Theory Mark						
Code		Internal assessment			End	Exam duratio	Term Work	Prac tical	Oral	Total
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	n Hours	WOIK	licai		
ECC DO501	Sensors and Applications	20	20	20	80	03	-		-	100

Course Pre-requisite:

- 1. Concept of internal characteristics of passive elements like resistor, capacitor, inductor etc.,
- 2. Diode and transistor
- 3. Working, knowledge of basic fundamentals of mechanical terms like position, strain, stress etc

Course Objectives:

- 1. To understand the stages of product (hardware / software) design & development
- 2. To learn different considerations of analog, digital & mixed circuit design
- 3. To be acquainted with methods of PCB design & different tools used for the same
- 4. To be aware of the importance of testing in product design cycle
- 5. To gain knowledge about various processes & importance of documentation

Course Outcomes:

- 1. Understand the concept of sensors and its characteristics
- 2. Understand the practical approach in design of technology based on different sensors
- 3. Learn various sensor materials and technology used in designing sensors
- 4. Implement a prototype for demonstrating the application of the sensors
- 5. Demonstrate problem solving & troubleshooting skills in sensor applications

Module No.	Unit No.	Contents	Hrs.
1		Sensors Fundamentals and Characteristics Sensors, Signals and Systems	06
	1.1	Sensor Classification-Physical, Mechanical, Electrical, Chemical, electro-	
		chemical	
	1.2	Functional unit of sensor: receptor and transducer; Units of Measurements	

	1.3	Sensor Characteristics, Physical Principles of Sensing Electric Charges, Fields, and Potentials; Capacitance; Magnetism; Induction; Resistance; Piezoelectric Effect; Hall Effect; Temperature and Thermal Properties of Material; Heat Transfer; Light; Dynamic Models of Sensor Elements	;
2		Interface Electronic Circuits	06
	2.1	Input Characteristics of Interface Circuits, Amplifiers, Excitation Circuits	
	2.2	Analog to Digital Converters, Direct Digitization and Processing, Bridge Circuits,	
		Data Transmission, Batteries for Low Power Sensors	
	2.3	Analog and digital filtering	
3		Sensors in Different Applications	08
	3.1	Area Occupancy and Motion Detectors; Position, Displacement, and Level;	
		Velocity and Acceleration; Force, Strain, and Tactile Sensors; Pressure Sensors	
	3.2	Temperature Sensors; Biosensors, Gas sensors, proximity sensor. (Correlation of	
		output with the parameter being measured in engineering terms): Only Working	
		principle of each type of sensors and transduction action (for example: detection	
		of change in temperature and conversion to electrical quantity say resistance and	
		corresponding correlation)	
	3.3		
		digital devices such as mobile phone, house-hold instrument such as washing	
		machine (name of various sensors and their usability in each of these	
4		applications).	07
4	4.1	Sensor Materials and Technologies	07
	4.1	MEMS-cantilever based sensors and their types such as, accelerometer, gyroscopes: Structure, material used (polysilicon, Silicon etc), working principle,	
		applications.	
	4.2	Metal oxide semiconductor (nano-particles) based sensors such as gas sensors,	
	7.2	biomedical sensors, chemical sensors (Structure, material used, working principle,	
		applications)	
5		Smart Sensors	06
	5.1	4-20 mA Current Loop	
	5.2	Types of smart Sensors, Limitations of single sensor and applicability of Array-	.
		based sensor technology, Electronic-Nose sensors	
	5.3	HART, Industrial buses such as Profibus, CANbus, etc.	
6		Industrial standards for the sensors and its calibration	06
	6.1		-
		1, ISA S82.01, NEMA standards	
	6.2	PCI 6.5 to SOX compliance, HIPAA compliance, and FISMA compliance in	
		software development: Basic introduction about each of these standards,	
		Calibration and compatibility	39
		Total	

- 1. Jacob Fraden, Handbook of Modern Sensors Physics, Designs, and Applications, Fourth Edition, Springer
- 2. D. Patranabis, Sensors and Transducers, 2nd Edition, PHI Publication, New Delhi

- 3. Mechatronics- Ganesh S. Hegde, Published by University Science Press, 2nd Edition, An imprint of Laxmi Publication Private Limited
- 4. Terry Bartelt, Process Control Systems and Instrumentation, Delmar Cengage Learning India Edition New edition

Reference Books:

- 1. www.nptel.ac.in
- 2. G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices, Publisher: CRC Press
- 3. ISA S82.01 Safety Standard for Electrical & Electronic Test, Measuring, Controlling Related Equipment
- 4. http://www.ebme.co.uk/arts/safety/part6.htm

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.3.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Tea	aching Sch	ieme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 501	Communication Engineering Lab		02	1	-	01	-	01

	Subject Name	Examination Scheme								
Subject Code		Theory Marks						Pra	Owol	Total
		Internal assessment			End Sem.	Exam duration	Work	cti cal	Orai	Total
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours				
ECL 501	Communication Engineering Lab						25		25	50

Laboratory Outcomes:

After successful completion of the course students will be able to:

- 1. Perform hardware implementation of various analog and digital modulation methods.
- 2. Illustrate generation and detection of various pulse modulation techniques.
- 3. Apply techniques to insert Inter Symbol Interference and methods to mitigate its effect.
- 4. Simulate various analog and digital modulation methods.
- 5. Demonstrate multiplexing and de-multiplexing of signals using multiplexing techniques.
- 6. Illustrate the effect of sampling frequency on the reconstructed signal.

Term Work:

At least 10 experiments covering entire syllabus should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiments based on laboratory setups
1	Analog Modulation and demodulation: AM
2	Analog Modulation and demodulation: FM

3	Pre-emphasis & De-emphasis
4	Analog Pulse modulation (PAM/PWM/PPM)
5	Time division multiplexing
6	Frequency division multiplexing
7	Verification of Sampling theorem
8	Generation of Line codes
9	Binary modulation and demodulation of BASK
10	Binary modulation and demodulation of BPSK
11	Binary modulation and demodulation of BFSK
	Simulation-based experiments
12	Simulation of AM and FM
13	Simulation of PAM, PPM, PWM
14	Simulation of BPSK/BASK/MSK modulation
15	Simulation of duobinary encoder, decoder

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL502	Software Engineering and Web Technologies Lab		02	1		01	-	01

		Examination Scheme								
			Theory Marks							
Subject	Subject Name	Internal assessment			End Sem. Exam			Practi	Oral	Total
Code	Ü	Test 1	Test 2	Avg of Test 1 and Test 2	Exam	duration Hours	Work	cal	Orai	Total
ECL502	Software Engineering and Web Technologies Lab						25		25	50

Laboratory Outcomes:

After successful completion of the course students will be able to:

- 1. Identify requirements and apply process model to selected case study.
- 2. Analyse and design models for the selected case study using UML modelling
- 3. Use various Software Engineering and Project Management Tools
- 4. Design static web pages using HTML5, CSS3, Bootstrap.
- 5. Apply the concepts of Client-side validation and scripts to static web pages using JavaScript and JQuery.
- 6. Build dynamic web pages using Server-Side Scripting.

Term Work:

At least 10 experiments covering entire syllabus of Software Engineering and Web Technologies (50% Software Engineering and the remaining 50% Web Technologies) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name					
	Software Engineering					
1	Prepare detailed statement of problem with feasibility study and identify suitable process model for the same with justification. *					
2	Develop Software Requirement Specification (SRS) document in IEEE format for the project. *					
3	Prepare schedule for the project using any project management tool *					
4	Prepare RMMM plan for the project.					
5	Identify scenarios & develop UML Use case and Class Diagram for the project. *					
6	Develop Activity / State Transition diagram and Sequence diagram for the project. *					
7	Develop test cases for the project using white box testing.					
	Web Technologies					
1	a) Installation and Setting of LAMP / WAMP / XAMP.					
	b) Develop a Prototype of the selected problem statement (UI and UX).					
2	Design and Implement web pages using HTML5 and CSS3 on the selected problem statement.					
3	Design Form using javascript/HTML/JQuery with client-side validations on the selected problem statement.					
4	Design Interactive web pages using PHP (any framework) with database connectivity to MySQL on the selected problem statement.					
5	Design and Implement web pages with PHP and Ajax on the selected problem statement.					
6	Enhance the web page designed in experiment number 2 using bootstrap.					
•	 Practicals (Software Engineering) can be conducted using any open-source software tools like Dia, Star UML, Project Libre etc. Students are expected to pick up one Case study/Mini Project such as hospital management, student management, e-shop etc., and perform all the experiments based on that. 					

Text Books:

1. "The Unified Modelling Language User Guide" by Grady Booch, James Rumbaugh, Ivar Jacobson, Pearson Publication, ISBN 978-81-7758-372-4

References:

- 1. UML Tutorial "www.tutorialspoints.com/uml/"
- 2. "Fundamentals of Object-Oriented Design in UML", Meilir Page-Jones, Pearson Education
- 3. UML Basics— an Introduction to the Unified Modeling Language IBM "www.ibm.com > Learn > Rational"
- 4. UML in 24 Hours

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Teaching Scheme				Credi	ts Assigne	d
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 503	Software Testing & Quality Assurance Lab		02			01		01

	Subject Name	Examination Scheme									
Subject Code		Theory Marks						Descri	01	Total	
		Internal assessment			End	Exam	Term Work	Pra ctic	Oral	Total	
		Test 1	Test 2	Avg of Test 1	Sem Exam	duration Hours		al			
				and Test 2							
ECL 503	Software Testing & Quality Assurance Lab						25		25	50	

Laboratory Outcomes:

After successful completion of the laboratory, students will be able to:

- 1. Understand the system thoroughly (for requirement, designing and implementation).
- 2. Recognize failures in the system.
- 3. Investigate the reason for bugs.
- 4. Design test plan and test cases.
- 5. Execute the test cases manually and using automated tools.
- 6. Manage the testing process.

Term Work:

At least 10 experiments covering entire syllabus should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name
1	Write programs in C Language to demonstrate the working of the
	following
	a. constructs: i) dowhile ii) whiledo iii) ifelse iv)switch

2	Write a program for any one function of the selected system. Introspect
	the causes for its failure and write down the possible reasons for its
	failure.
3	Study the system, requirement specifications and Designing the system.
4	Write the brief test plan.
5	Select the test cases(positive and negative scenarios) for the selected
	system.
6	Design Test cases for the system using boundary value analysis or
	equivalent class partitioning.
7	Manual execution of test cases and prepare defect reports.
8	Identify regression scenarios for automation for any one/two test case.
9	Study of any testing tool (e.g. Selenium).
10	Automate the scenario in exp 8 with a testing tool. (e.g. Selenium)
11	Study of any test management tool (e.g. Qase).
12	Writing down test cases and execution using tools (e.g. Qase).
13	Study defect management (e.g. JIRA)
14	Design quality matrix for your system.
Consider one s	ystem (e.g. Library Management System, ATM system, Banking application, Library

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Management System) and use throughout the lab.

Subject Code	Subject Name	Te	aching Sche	me		Credit	s Assigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 503	ASIC Verification		02			01		01

		Examination Scheme									
Cubiast	Cubicat			Theory Mark	TE.	4. 1/	0.1	T . 1			
Subject Code	Subject Name		Internal assessment		End Exam Sem. duration		Term Work	ractical/ Oral	Oral	Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours					
ECL 503	ASIC Verification						25	25	-	50	

Laboratory Outcomes:

After successful completion of the laboratory students will be able to;

- 1. Create test plan and test cases to verify any digital design.
- 2. Apply the advanced verification techniques like Randomization on set of inputs.
- 3. Create a transaction class and apply object -oriented programming for Verification.
- 4. Carry out simulation of designs using System Verilog hardware verification language.
- 5. Develop a complete Layered Test-bench for any digital design.

Term Work:

At least 10 experiments covering entire syllabus should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr.	Experiment Name
No.	
1	Write Verilog code for 4:1 MUX using all Verilog modeling styles and simulate
	the same.
2	Write Verilog code and test-bench for D flip flop and 4 bit counter and simulate
	the same.
3	Create a test plan and self-checking test-bench for the ALU.
4	Create dynamic arrays, associative arrays, and queues using System Verilog.

5	Write test bench using dynamic arrays, associative arrays with System
	Verilog to test a synchronous 8-bit x64K (512kBit) RAM.
6	Create an Interface for a Memory Design. Use Modport to assign direction to
	signal.
7	Create class and its objects and perform deep copy and shallow copy.
8	Create an Interface for a Memory Design. (without modport)
9	To understand and create Virtual interface and use it in a class.
10	Given design specifications, draw waveform and write SVA expressions.
11	Given design specifications, draw waveform and write clock based Sequences
12	Create IPCs like events, mailbox and semaphores to interact between threads.
13	Find coverage by writing cover groups for a design.
14	Implementation of parallel processes using Fork Join/join_any/join_none
	statement.
15	Create a layered test-bench for a simple design like Adder.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name Teaching Scheme Credits Assign					Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 503	Information Theory and Coding		02	-		01		01

	Subject Name	Examination Scheme										
G 11 4				Theory Marks	Term	ractical/	Oral	Total				
Subject Code		Internal assessment End Sem				Exam duration	Work	Oral	Orai	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours						
	Information											
ECL 503	Theory and Coding	1	I		ŀ	-	25	25		50		

Laboratory Outcomes:

After successful completion of the laboratory students will be able to

- 1. Understand the basics of information theory, source coding techniques and calculate Entropy of source.
- 2. Implement Shannon-Hartley equation to find the upper limit on the Channel Capacity.
- 3. Apply various channel coding schemes & demonstrate their capabilities towards the improvement of the noise performance of communication system.
- 4. Apply the knowledge of digital electronics and describe the error control codes like block code, cyclic code and convolutional codes.
- 5. Implement audio and video compression techniques

Term Work:

At least 10 experiments covering entire syllabus of **Information Theory and Coding (ECC DO501)** should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name
1	Write a program for determination of entropy and mutual information of
	agiven channel: Noise free channel.

2	Write a program for determination of entropy and mutual information of
	agiven channel: Binary symmetric channel.
3	Write a program for Shannon-Hartley equation to find the upper limit on
	the Channel Capacity
4	Write a program for generation and evaluation of variable length source
	coding Shannon – Fano Coding and decoding.
5	Write a program for generation and evaluation of variable length source
	coding Huffman Coding and decoding.
6	Write a program for generation and evaluation of variable length source
	coding LZW Coding and decoding.
7	Write a program for Forward error correction system with a given Linear
	block code.
8	Write a Program for coding & decoding of Linear block codes.
9	Write a Program for coding & decoding of Cyclic codes.
10	Write a program for coding and decoding of Convolutional codes.
11	Write a program for computing the LPC coefficients.
12	Write a program for video compression.

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject	Subject Name	Teac	ching Sche	me	Credits Assigned				
Code	Subject Manie	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECL503	Sensors and Applications	-	02	-	-	01	-	01	

		Examination Scheme								
	~	Theory Marks						Practic	Oral	Total
Subject Code	Subject Name Code		Internal assessment			Exam duration	Term Work	al/	Orai	10tai
Code		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	Hours		Oral		
ECL503	Sensors and Applications						25	25	-	50

Laboratory Outcomes:

After successful completion of the laboratory students will be able to

- 1. Choose proper sensor with its thorough understanding of the characteristics.
- 2. Design suitable signal conditioning circuit for the chosen sensors
- 3. Perform characterization of sensor materials and technology used in different sensors
- 4. Implement a prototype for demonstrating the application of the sensors
- 5. Demonstrate problem solving & troubleshooting skills in sensor applications

Term Work:

At least 10 experiments covering entire syllabus of **Sensors and Applications** should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name
1	Characteristics of temperature sensors
2	Characteristics of optical Sensors
3	I to V and V to I converter
4	Frequency to voltage converter using Opamp

5	Inverting and non-inverting amplifier using OpAmp
6	LVDT Sensor construction and characteristics
7	Instrumentation Amplifier Design
8	Filter Design (Analog)
9	Filter Design (Digital Simulation)
10	Case study on any house hold appliance
11	4-20mA Current Loop
12	Interface with Real word using A/D converters
13	Simulations of Micro-sensors
14	Simulations of micro-actuators such as micro-heater/ micro-
	motors

Case study: Make a detailed report on industrial applications of sensor: Automotive, mobile phone, consumer products or household equipment such as fridge, washing machine (anyone, all students in a batch should take up different problem statement). The case study should include:

- 1. Name of equipment
- 2. Application of selected equipment
- 3. Sensors used in that equipment, working principle of each type of sensor
- 4. Draw the complete block diagram of equipment and explain the working of each block.
- 5. Summary
- 6. References

References:

- 1. https://www.microchip.com/stellent/groups/sitecomm_sg/documents/devicedoc/en542976.
 pdf
- 2. Practical Design Techniques for Sensor Signal Conditioning, 1999, Edited by Walt Kester, Analog Devices, 1999, ISBN-0-916550-20-6
 https://www.analog.com/en/education/education-library/practical-design-techniques-sensor-signal-conditioning.html#

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Te	aching Schem	e		Credits Assigned				
		Theory	Practical	Tuto rial	Theory	Practical	Tutorial	Total		
ECL504	Professional Communication and Ethics-II		2*+ 2 Hours (Batch-wise)			02		02		

^{*}Theory class to be conducted for full class.

		Examination Scheme									
G 1.				Theory Ma							
Subject Code	Subject Name	Int	ternal a	assessment	End	Exam	Term Prac		01	T-4-1	
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	tical	Oral	Total	
ECL504	Professional Communication and Ethics - II						25		25	50	

Course Objectives:

Learners should be able to:

- 1. Discern and develop an effective style of writing important technical/business documents.
- 2. Investigate possible resources and plan a successful job campaign.
- 3. Understand the dynamics of professional communication in the form of group discussions, meetings, etc. required for career enhancement.
- 4. Develop creative and impactful presentation skills.
- 5. Analyse personal traits, interests, values, aptitude and skills.
- 6. Understand the importance of integrity and develop a personal code of ethics

Course Outcomes:

- 1. Plan and prepare effective business/ technical documents which will in turn provide solid foundation for their future managerial roles.
- 2. Strategize their personal and professional skills to build a professional image and meet the demands of the industry.
- 3. Emerge successful in group discussions, meetings and result-oriented agreeable solutions in group communication situations.
- 4. Deliver persuasive and professional presentations.
- 5. Develop creative thinking and interpersonal skills required for effective professional communication.
- 6. Apply codes of ethical conduct, personal integrity and norms of organizational behavior.

Module No.	Unit No.	Contents	Hrs.
1		ADVANCED TECHNICAL WRITING: PROJECT/PROBLEM BASED LEARNING (PBL)	06
	1.1	Purpose and Classification of Reports Classification on the basis of: Subject Matter (Technology, Accounting, Finance, Marketing, etc.), Time Interval (Periodic, One-time, Special), Function (Informational, Analytical, etc.), Physical Factors (Memorandum, Letter, Short & Long)	
	1.2	Parts of a Long Formal Report Prefatory Parts (Front Matter), Report Proper (Main Body), Appended Parts (Back Matter)	
	1.3	Language and Style of Reports Tense, Person & Voice of Reports, Numbering Style of Chapters, Sections, Figures, Tables and Equations, Referencing Styles in APA & MLA Format, Proof-reading through Plagiarism Checkers	
	1.4	Definition, Purpose & Types of Proposals Solicited (in conformance with RFP) & Unsolicited Proposals, Types (Short and Long proposals)	
	1.5	Parts of a Proposal Elements, Scope and Limitations, Conclusion	
	1.6	Technical Paper Writing Parts of a Technical Paper (Abstract, Introduction, Research Methods, Findings and Analysis, Discussion, Limitations, Future Scope and References), Language and Formatting, Referencing in IEEE Format	
2		EMPLOYMENT SKILLS	06
	2.1	Cover Letter & Resume Parts and Content of a Cover Letter, Difference between Bio-data, Resume & CV, Essential Parts of a Resume, Types of Resume (Chronological, Functional & Combination)	
	2.2	Statement of Purpose Importance of SOP, Tips for Writing an Effective SOP	
	2.3	Verbal Aptitude Test Modelled on CAT, GRE, GMAT exams	
	2.4	Group Discussions Purpose of a GD, Parameters of Evaluating a GD, Types of GDs (Normal, Casebased & Role Plays), GD Etiquette	
	2.5	Personal Interviews Planning and Preparation, Types of Questions, Types of Interviews (Structured, Stress, Behavioral, Problem Solving & Case-based), Modes of Interviews: Face-to-face (One-to one and Panel) Telephonic, Virtual	
3		BUSINESS MEETINGS	02
	3.1	Conducting Business Meetings Types of Meetings, Roles and Responsibilities of Chairperson, Secretary and Members, Meeting Etiquette	
	3.2	Notice, Agenda, Minutes	

4		TECHNICAL/ BUSINESS PRESENTATIONS	02
	4.1	Effective Presentation Strategies	
		Defining Purpose, Analyzing Audience, Location and Event, Gathering, Selecting	
		& Arranging Material, Structuring a Presentation, Making Effective Slides, Types of	1
		Presentations Aids, Closing a Presentation, Platform Skills	
	4.2	Group Presentations	
		Sharing Responsibility in a Team, Building the contents and visuals together,	
		Transition Phases	
5		INTERPERSONAL SKILLS	08
	5.1	Interpersonal Skills	
		Emotional Intelligence, Leadership & Motivation, Conflict Management &	
		Negotiation, Time Management, Assertiveness, Decision Making	
	5.2	Start-up Skills	
		Financial Literacy, Risk Assessment, Data Analysis (e.g. Consumer Behavior,	
		Market Trends, etc.)	
6		CORPORATE ETHICS	02
	6.1	Intellectual Property Rights	
		Copyrights, Trademarks, Patents, Industrial Designs, Geographical Indications	
		Integrated Circuits, Trade Secrets (Undisclosed Information)	
	6.2	Case Studies	
		Cases related to Business/ Corporate Ethics	
		Total	26

LIST OF ASSIGNMENTS FOR TERMWORK:

(In the form of Short Notes, Questionnaire/ MCQ Test, Role Play, Case Study, Quiz, etc.)

- 1. Cover Letter and Resume
- 2. Short Proposal
- 3. Meeting Documentation
- 4. Writing a Technical Paper/ Analyzing a Published Technical Paper
- 5. Writing a SOP
- 6. IPR
- 7. Interpersonal Skills
- 8. Aptitude test (Verbal Ability)

Note:

- 1. The Main Body of the project/book report should contain minimum 25 pages (excluding Front and Back matter).
- 2. The group size for the final report presentation should not be less than 5 students or exceed 7 students.
- 3. There will be an end-semester presentation based on the book report.

GUIDELINES FOR INTERNAL ASSESSMENT

Term Work:

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:

Assignment : 10 Marks
Attendance : 5 Marks
Presentation slides : 5 Marks
Book Report (hard copy) : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal oral:

Oral Examination will be based on a GD & the Project/Book Report presentation.

Group Discussion :10 marks
Project Presentation :10 Marks
Group Dynamics :5 Marks

Text books and Reference books:

- 1. Arms, V. M. (2005). Humanities for the engineering curriculum: With selected chapters from Olsen/Huckin: Technical writing and professional communication, second edition. Boston, MA: McGraw-Hill.
- 2. Bovée, C. L., & Thill, J. V. (2021). *Business communication today*. Upper Saddle River, NJ: Pearson.
- 3. Butterfield, J. (2017). *Verbal communication: Soft skills for a digital workplace*. Boston, MA: Cengage Learning.
- 4. Masters, L. A., Wallace, H. R., & Harwood, L. (2011), *Personal development for life and work*. Mason: South-Western Cengage Learning.
- 5. Robbins, S. P., Judge, T. A., & Campbell, T. T. (2017). *Organizational behaviour*. Harlow, England: Pearson.
- 6. Meenakshi Raman, Sangeeta Sharma (2004) Technical Communication, Principles and Practice. Oxford University Press
- 7. Archana Ram (2018) Place Mentor, Tests of Aptitude For Placement Readiness. Oxford University Press
- 8. Sanjay Kumar & Pushp Lata (2018). Communication Skills a workbook, New Delhi: Oxford University Press.

Subject Code	Subject Name	Credits Assigned
ECM501	Mini project - 2A	02

		Examination Scheme									
			Tł	Term	Practical/	Total					
							Work	Oral			
Course	Course				End	Exam					
Code	Name	Inter	nal Asses	sment	Sem	duration					
				1	Exam	Hours					
		Test 1	Test 2	Avg. of							
				Test 1 and							
				Test 2							
ECM501	Mini project - 2A						25	25	50		
ECM501	- 2A						25	25	30		

Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcomes:

Learner will be able to;

- 1. Identify problems based on societal /research needs.
- 2. Apply knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/experimental/simulations.
- 5. Analyze the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices.
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Major focus of Mini-project 2 shall be towards exploration and applicability of

knowledge acquired in the domain areas of DLOs available for the year.

- Student shall give special consideration to identify and provide solutions to the burning societal and/or environmental issues which may affect the mankind to larger extend.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.

A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.

- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's
 recommendations, if the proposed Mini Project adhering to the qualitative aspects
 mentioned above gets completed in odd semester, then that group can be allowed to work
 on the extension of the Mini Project with suitable improvements/modifications or a
 completely new project idea in even semester. This policy can be adopted on case-tocase basis.

Guidelines for Assessment of Mini Project:

The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on logbook: 10
Marks awarded by review committee : 10
Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

In **first semester** entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.

- First on identification and finalization of problem
- Second on proposed solution for the problem.

In **second semester** expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.

- First review shall base on readiness of building working prototype.
- Second review shall be based on poster presentation-cum-demonstration of working model in last month of the said semester.

Half-year project:

In this case students' group shall complete project in all aspects, in a semester, including;

- o Identification of need/problem
- o Proposed acceptable solution for the identified problem
- o Procurement of components/systems, if any,
- Building a working prototype and testing

The group shall be evaluated twice during the semester by review committee, mainly look for the progress as;

- First review focus shall be towards identification & selection of problem and probable solution proposal.
- Second review shall be for implementation and testing of solution. (Innovative/out of box solution)

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria:

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Innovativeness and out of box thinking
- 6. Cost effectiveness and Societal impact
- 7. Functional working model as per stated requirements
- 8. Effective use of skillsets acquired through curriculum including DLOs
- 9. Effective use of standard engineering practices & norms
- 10. Contribution of an individual as team member/Leader
- 11. Feasibility to deploy the solution on large scale
- 12. Clarity in written and oral communication

In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in miniproject.

In case of **half year project** all criteria's in generic may be considered for performance evaluation of students in mini-project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued by the University of Mumbai. Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations, having experience of more than five years approved by head of the Institute.

Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed by team of external & internal examiner at the end of semester/year. Performance shall be evaluated based on;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Implementation of working model
- 5. Effective use of diversified skill-set
- 6. Effective use of standard engineering practices & norms
- 7. Contribution of an individuals as a member/Leader
- 8. Clarity in written and oral communication

Semester VI

Course Code	Course Name		ching Schontact Hou			Credits Assigned			
		TH	PR	Tut	TH	Pract.	Tut	Total	
ECC 601	Embedded Systems and RTOS	3	-	-	3	-	-	3	
ECC 602	Artificial Intelligence	3	-	-	3	-	-	3	
ECC 603	Computer Networks	3	-	-	3	-	-	3	
ECC 604	Data Warehousing and Mining	3	-	-	3	-	-	3	
ECC DO601	Department Level Optional Course -II	3	-	-	3	-	-	3	
ECL 601	Embedded Systems Lab	-	2			1		1	
ECL602	Artificial Intelligence and Computer Networks Lab	-	2		-	1	-	1	
ECL603	Data Warehousing and Mining Lab	-	2		-	1	-	1	
ECL 604	Skill-based Laboratory	-	4	-	-	2	-	2	
ECM601	Mini Project 2B	-	4\$	-	-	2	-	2	
	Total	15	14	-	15	7	-	22	

^{\$} indicates workload of learner (Not faculty), for mini-project

					Exam	ination Scher	ne		
Course Code	Course Name	Internal Assessment			End Sem	Exam Duration (in		Pract/	
0000		Test 1	Test 2	Av	Exam	Hrs)	TW	Oral	Total
ECC 601	Embedded Systems and RTOS	20	20	20	80	03	-	-	100
ECC 602	Artificial Intelligence	20	20	20	80	03	-	-	100
ECC 603	Computer Networks	20	20	20	80	03	-	-	100
ECC 604	Data Warehousing and Mining	20	20	20	80	03	-	-	100
ECC DO601	Department Level Optional Course -II	20	20	20	80	03	-	-	100
ECL 601	Embedded Systems Lab	-		-	-	-	25	25	50
ECL602	Artificial Intelligence and Computer Networks Lab	-	-	1	-	-	25	25	50
ECL603	Data Warehousing and Mining Lab	-	-	•	-	-	25	25	50
ECL 604	Skill-based Laboratory	-	-	ı	-	-	50	-	50
ECM601	Mini Project - 2B						25	25	50
	Total	·		100	400	-	150	100	750

Department Level Optional Course - II (DO 601):

1. Machine Learning	3. Digital Signal Processing
2. Industrial Automation	4. Electronic Product Design

Subject Code	Subject Name	Te	aching Scho	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC 601	Embedded Systems and RTOS	03		-	03		1	03	

Subject Code	Subject Name	Examination Scheme									
				Theory Mark							
		Internal assessment			End	Exam	Term	Prac	Oral	Total	
		Test	Test	Avg of Test 1	Sem.	duration	Work	tical			
		1	2	and Test 2	Exam	Hours					
	Embedded										
ECC 601	Systems and	20	20	20	80	03				100	
	RTOS										

Course Pre-requisite:

Digital Electronics (ECC 303)
Microprocessors and Microcontrollers (ECC 404)

Course Objectives:

- 1. To study concepts involved in Embedded Hardware and Software for System realisation.
- 2. To learn the concepts of modern microcontroller cores like the ARM-Cortex
- 3. To learn Real-time programming to design time-constrained embedded systems

Course Outcomes:

- 1. Identify and describe various characteristic features and applications of Embedded systems.
- 2. Analyse and select hardware for Embedded system implementation.
- 3. Evaluate various communication protocols for Embedded system implementation.
- 4. Compare GPOS and RTOS and investigate the concepts of RTOS.
- 5. Evaluate and use various tools for testing and debugging embedded systems
- 6. Design a system for different requirements based on life-cycle for the embedded system, keeping oneself aware of ethics and environmental issues.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Embedded Systems	03
	1.1	Definition, Characteristics, Classification, Applications	
	1.2	Design metrics of Embedded system and Challenges in optimization of metrics	
2		Embedded Hardware Elements	13
	2.1	Features of Embedded cores- μ C, ASIC, ASSP, SoC, FPGA, RISC and CISC cores. Types of memories.	
	2.2	Case Study: ARM Cortex-M3 Features, Architecture, Programmer's model, Special Registers, Operating Modes and States, MPU, Memory map and NVIC.	
	2.3	Low power: - Need and techniques. Case study of Low Power modes in Cortex-M3.	
	2.4	Communication Interfaces: Comparative study of Serial communication Interfaces (RS-232, RS-485), SPI, I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee. (Frame formats of above protocols are not expected)	
2	2.5	Selection criteria of Sensors and Actuators	10
3	3.1	Embedded Software Program Modelling concepts: DFG, CDFG, FSM.	12
	3.2	Real-time Operating system: - Need of RTOS in Embedded system software and comparison with GPOS, Task, Task states, Multi-tasking, Task scheduling, and Algorithms-Preemptive SJF, Round-Robin, Priority, Rate Monotonic Scheduling, Earliest Deadline First. Inter-process communication: Message queues, Mailbox, Event timers. Task synchronization: Need, Issues - Deadlock, Race condition, live Lock, Solutions using Mutex, Semaphores. Shared data problem, Priority inversion.	
4		Introduction to Free RTOS	03
		Free RTOS Task Management features, Resource Management features, Task Synchronization features, Event Management features, Calculate the CPU Utilization of an RTOS, Interrupt Management features, Time Management features.	
5		Testing and Debugging Methodology	02
	5.1	Testing & Debugging: Hardware testing tools, Boundary-scan/JTAG interface concepts, Emulator.	
	5.2	Software Testing tools, simulator, debugger. White-Box and Black-Box testing.	
6		System Integration (Case Studies)	06
	6.1	Embedded Product Design Life-Cycle (EDLC)- Waterfall Model	
	6.2	Hardware-Software Co-design	
	6.3	Case studies for Automatic Chocolate Vending Machine, Washing Machine, Smart Card, highlighting i) Specification requirements (choice of components), ii) Hardware architecture iii) Software architecture	
		Total	39

Note: - Referring to data sheets while selecting hardware components must be encouraged.

- 1. Dr. K. V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, 3rd Edition.
- 3. Sriram Iyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.
- 4. Joseph Yiu, "The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.
- 5. www.freertos.org

Reference Books:

- 1. David Simon, "An Embedded Software Primer", Pearson, 2009.
- 2. Jonathan W. Valvano, "Embedded Microcomputer Systems Real Time Interfacing", Publisher Cengage Learning, 2012 3rd Edition.
- 3. Andrew Sloss, Domnic Symes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004.
- 4. FrankVahid, Tony Givargis, "Embedded System Design A Unified Hardware/SoftwareIntroduction", John Wiley & Sons Inc., 2002.
- 5. Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Subject Code	Subject Name	Tea	ching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC602	Artificial Intelligence	03			03			03	

Subject	Subject Name	Examination Scheme										
				Theory Marl								
Code		Internal assessment			End	Exam	Term	Prac	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	Work	tical				
ECC602	Artificial Intelligence	20	20	20	80	03				100		

Course Pre-requisite:

Data structures and algorithms, Discrete mathematics, Basic Mathematics

Course Objectives:

- 1. To gain perspective of AI and its foundations.
- 2. To study different agent architectures and properties of the environment.
- 3. To understand the basic principles of AI towards problem solving, inference, perception, knowledge representation, and learning.
- 4. To investigate probabilistic reasoning under uncertain and incomplete information.
- 5. To explore the current scope, potential, limitations, and implications of intelligent systems.

Course Outcomes:

- 1. Identify the characteristics of the environment and differentiate between various agent architectures.
- 2. Apply the most suitable search strategy to design problem solving agents.
- 3. Represent a natural language description of statements in logic and apply the inference rules to design Knowledge Based agents.
- 4. Apply a probabilistic model for reasoning under uncertainty.
- 5. Comprehend various learning techniques.
- 6. Describe the various building blocks of an expert system for a given real world problem.

Module	Unit										
No.	No.	Contents	Hrs.								
1		Introduction to Artificial Intelligence	3								
1	1.1	Artificial Intelligence (AI), AI Perspectives: Acting and Thinking humanly,									
	1.1	Acting and Thinking rationally									
	1.2	History of AI, Applications of AI, The present state of AI, Ethics in AI	-								
2	1.2	Intelligent Agents	4								
_	2.1	Introduction of agents, Structure of Intelligent Agent, Characteristics of									
		Intelligent Agents									
	2.2	Types of Agents, Simple Reflex, Model Based, Goal Based, Utility Based									
		Agents.									
	2.3	Environment Types, Deterministic, Stochastic, Static, Dynamic, Observable,									
		Semi-observable, Single Agent, Multi Agent									
3		Solving Problems by Searching	12								
	3.1	Definition, State space representation, Problem as a state space search,	1								
		Problem formulation, Well-defined problems									
	3.2	Solving Problems by Searching, Performance evaluation of search strategies,									
		Time Complexity, Space Complexity, Completeness, Optimality									
	3.3	Uninformed Search, Depth First Search, Breadth First Search, Depth Limited									
		Search, Iterative Deepening Search, Uniform Cost Search,									
		Bidirectional Search									
	3.4	Informed Search, Heuristic Function, Admissible Heuristic, Informed Search									
		Technique, Greedy Best First Search, A* Search, Local Search, Hill Climbing									
		Search, Simulated Annealing Search, Optimization, Genetic Algorithm									
	3.5	Game Playing, Adversarial Search Techniques, Mini-max Search, Alpha-Beta									
		Pruning									
4		Knowledge and Reasoning	10								
	4.1	Definition and importance of Knowledge, Issues in Knowledge									
		Representation, Knowledge Representation Systems, Properties of Knowledge									
		Representation Systems	-								
	4.2	Propositional Logic (PL), Syntax, Semantics, Formal logic-connectives, truth									
		tables, tautology, validity, well-formed-formula,	-								
	4.3	Predicate Logic, FOPL, Syntax, Semantics, Quantification, Inference rules in									
	4.4	FOPL, Introduction to logic programming (PROLOG)	-								
	4.4	Forward Chaining, Backward Chaining and Resolution in FOPL	~								
5	F 4	Reasoning Under Uncertainty	5								
	5.1	Handling Uncertain Knowledge, Random Variables, Prior and Posterior									
	<i>5</i> 2	Probability, Inference using Full Joint Distribution									
	5.2	Bayes' Rule and its use, Bayesian Belief Networks, Reasoning in Belief Networks									
6		Planning and Learning									
U	6.1	The planning problem, Partial order planning, total order planning.									
	6.2		5								
	0.4	Learning in AI, Learning Agent, Concepts of Supervised, Unsupervised, Semi -Supervised Learning, Reinforcement Learning, Ensemble Learning.									
		-Supervised Learning, Reinforcement Learning, Ensemble Learning.									

6.3	Expert Systems, Components of Expert System: Knowledge base, Inference engine, user interface, working memory, Development of Expert Systems	
	Total	39

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach —Second Edition" Pearson Education.
- 2. Elaine Rich and Kevin Knight —Artificial Intelligence Third Edition, Tata McGraw-Hill Education Pvt. Ltd., 2008.
- 3. George F Luger "Artificial Intelligence" Low Price Edition, Pearson Education., Fourth edition.

Reference Books:

- 1. Ivan Bratko "PROLOG Programming for Artificial Intelligence", Pearson Education, Third Edition.
- 2. D. W. Patterson, Artificial Intelligence and Expert Systems, Prentice Hall.
- 3. Saroj Kaushik "Artificial Intelligence", Cengage Learning.
- 4. Davis E. Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y., 1989.
- 5. Patrick Henry Winston, "Artificial Intelligence", Addison-Wesley, Third Edition.
- 6. N. P. Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will consist of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on the entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	eaching Sche	eme		Credits	Assigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC 603	Computer Networks	03		-	03		-	03

Subject Code	Subject Name	Examination Scheme										
				Theory Mark								
		Internal assessment			End	Exam Work		Practi cal	Oral	Total		
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours						
ECC 603	Computer Networks	20	20	20	80	03			-	100		

Course Pre-requisite: Communication Engineering

Course Objectives:

- 1. To understand the fundamental concepts of computer networking, protocols, architectures, and applications.
- 2. To study the multiple layer design issues, services, and state-of-the-art protocols of TCP/IP and OSI based Architectures.
- 3. To help students to acquire knowledge of address in the configuration of various scales of networks
- 4. To be conversant with the principles of Network Application Programming

Course Outcomes:

- 1. Enumerate the layers of OSI model and TCP/IP model and describe their functions.
- 2. Identify the characteristics of network devices and media used to design networks.
- 3. Demonstrate the knowledge of networking protocols at various layers of TCP/IP model.
- 4. Classify the routing protocols and analyse how to assign the IP addresses for a given network
- 5. Design and configure the networks using IP addressing and sub-netting / super-netting schemes.
- 6. Explain the functions of Application layer and Presentation layers, their paradigms and Protocols.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Data Communications and Networking	05
	1.1	Introduction to computer networks, Network software, Layers and services,	
		Network topologies, protocol hierarchies, design issues for the layers, connection	
		oriented and connectionless services	
	1.2	Reference models: Layer details of OSI, TCP/IP models. Communication	
		between layers. Internet	

2		Physical Layer	06
	2.1	Guided Transmission Media: Twisted pair, Coaxial, Fiber optics.	
	2.2	Unguided media (Wireless Transmission): Radio Waves, Microwave, Bluetooth,	
		Infrared, Circuit and Packet Switching	
	2.3	Network Devices: Repeaters, Hubs, Switches, Routers and Gateways	
3		Data Link Layer	08
	3.1	DLL Design Issues - Services, Framing, Error Control, Flow Control, Error	
		Detection and Correction Elementary Data Link protocols, Stop and Wait, Sliding	
		Window - Go Back N, Selective Repeat.	
	3.2	Medium Access Control sublayer: Channel Allocation problem, Multiple access	
		Protocol (Aloha, Carrier Sense Multiple Access (CSMA/CD), Local Area	
		Networks - Ethernet (802.3), Introduction to wireless LAN: 802.11x	
4		Network layer	08
	4.1	Network Layer design issues, Communication Primitives: Unicast, Multicast,	
		Broadcast. Network Layer Protocols: IPv4 Datagram Format, IPv4 Addresses,	
		IPv4 Addressing (classfull and classless), Sub-netting and Super-netting design	
		problems, IPv4 Protocol, IPv6 Packet Format, IPv6 Addressing, Transition from IPv4 to IPv6	
	4.2	Routing algorithms: Intra-domain Routing -Shortest Path, Distance Vector	
		Algorithms, Link State Routing, Inter-domain Routing Protocols.	
	4.3	Congestion control algorithms: Open loop congestion control, Closed loop	
		congestion control, QoS parameters.	
5		Transport Layer	07
	5.1	The Transport Service: Transport service primitives, Berkeley Sockets,	
		Connection management (Handshake), UDP, TCP, TCP state transition, TCP	
		timers	
	5.2	TCP Flow control (sliding Window), TCP Congestion Control: Slow Start	
6		Application layer	05
	6.1	Application layer Paradigms, Client-Server Paradigm: Application Programming Interface	
	6.2	Standard Client Server applications: World Wide Web and HTTP, FTP,	
		Electronic Mail, TELNET, Secure Shell (SSH), Domain Name System (DNS)	
		Total	39

- 1. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education
- 2. Behrouz A. Forouzan, Forouzan Mosharrat, Computer Networks A Top down Approach, McGraw Hill education
- 3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGraw Hill, Second Edition.

Reference Books:

1. James F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition, Pearson Education.

- 2. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Education.
- 3. W. A. Shay, Understanding communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.
- 4. L. L. Peterson and B. S. Davie, Computer Networks: A Systems Approach, 4th Ed, Elsevier India

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	eaching Sch	eme	Credits Assigned				
ECC604	Data	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Warehousing and Mining	03			03			03	

Subject Code	Subject Name	Examination Scheme									
			Theory Marks								
		Internal assessment			End	Exam	Term Work	Pract ical	Oral	Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	VVOIK	lear			
ECC604	Data Warehousing and Mining	20	20	20	80	03				100	

Course Pre-requisite:

Database Concepts, Algorithm Design and Analysis Concepts, Data Structures

Course Objectives:

- 1. To identify the scope and understand the fundamentals of Data Warehousing and Mining.
- 2. To understand the importance of data warehouse that would assist in providing business insights for data mining applications.
- 3. To instigate research interest towards advances in Data Mining.

Course Outcomes:

- 1. Understand Data Warehousing fundamentals and Dimensionality modelling principles
- 2. Understand the use of ETL techniques and apply OLAP operations.
- 3. Perceive the importance of data pre-processing and basics of data mining techniques.
- 4. Relate to the concepts of market basket analysis in real world applications.
- 5. Apply classification algorithms in real world dataset for classification and prediction.
- 6. Visualize the concept of clustering and its applications.

	Unit No.	Contents	Hrs.						
1		Data Warehousing and Dimension Modelling							
	1.1	Introduction to Data Warehouse, Characteristics of Data Warehouse	8						
	1.2	Components of Data warehouse Architecture, Data warehouse architecture							
	1.3	warehouses versus Data Marts,							
	1.4	E-R Modelling versus Dimensional Modelling,							
	1.5	Data Warehouse Schemas; Star Schema, Snowflake Schema, Fact Less Fact							
		Table, Fact Constellation Schema.							
	1.6	Inside Dimensional Table, Inside Fact Table,							
	1.7	Update to the dimension tables. OLTP Systems versus OLAP							

2		ETL and OLAP	
	2.1	Major steps in ETL process	6
		Data Extraction Methods	
	2.2	Data Transformation; Basic Tasks in Transformation, Major Data Transformation	
		Types	
	2.3	Data Loading Techniques	
	2.4	What is Multidimensional Data, OLAP Models: MOLAP, ROLAP.	
	2.5	OLAP operations: Slice, Dice, Rollup, Drilldown and Pivot.	
3		Data Mining and Data pre-processing	
	3.1	Introduction to data mining, Architecture for Data Mining,	6
	3.2	KDD process, Data Mining Functionalities, Interestingness Measures,	
	3.3	Classification of data mining system, major issues in data mining.	
	3.4	Data Summarization, Data Cleaning, Data Integration and Transformation,	
	3.5	Data Reduction, Data Discretization And Concept Hierarchy Generalization.	
4		Mining frequent patterns and associations	
	4.1	Market Basket Analysis, Frequent Item sets, Closed Item sets, and Association	7
		Rule	
	4.2	Frequent Pattern Mining, Efficient and Scalable Frequent Item set Mining	
		Methods: Apriori Algorithm, Association Rule Generation, Improving the	
		Efficiency of Apriori,	
	4.3	FP growth	
	4.4	Mining various kinds of association rules – Multilevel and Multidimensional	
5		Classification and Prediction	5
	5.1	Definition, Decision tree induction	
	5.2	Bayesian classification	
	5.3	Introduction to prediction, Linear and logistic regression techniques	
	5.4	Accuracy and error measures.	
6		Cluster analysis	7
	6.1	Definition, Distance Measures,	
	6.2	Clustering Algorithms: Partitioning- K means and K-medoids,	
	6.3	Hierarchical clustering- Agglomerative clustering and Divisive clustering	
		Total	39

- 1. Paulraj Ponniah, "Data Warehousing: Fundamentals for IT Professionals", Wiley India.
- 2. Han, Kamber, "Data Mining Concepts and Techniques", Morgan Kaufmann
- 3. Reema Theraja," Data warehousing, Oxford University Press.
- 4. M.H. Dunham, "Data Mining Introductory and Advanced Topics", Pearson Education.

Reference Books:

- 1. Ian H. Witten, Eibe Frank and Mark A. Hall, "Data Mining ", 3rd Edition Morgan Kaufmann publisher.
- 2. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining", Person Publisher.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Subject Code	Subject Name	To	eaching Schei	me	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECCDO601	Machine Learning	03	-		03			03	

			Examination Scheme									
Subject Code	Subject			Theory Mark								
	Name		Internal	assessment	End	Exam	Term Work	Pract ical	Oral	Total		
			Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	VV OI K	lear			
E	CCDO 601	Machine Learning	20	20	20	80	03				100	

Course Pre-requisite:

Data Structures, Basic Probability and Statistics, Algorithms

Course Objectives:

- 1. To introduce Machine learning concepts
- 2. To develop mathematical concepts required for Machine learning algorithms
- 3. To understand various Regression techniques
- 4. To understand Clustering techniques
- 5. To develop Neural Network based learning models

Course Outcomes:

- 1. Comprehend basics of Machine Learning
- 2. Build Mathematical foundation for machine learning
- 3. Understand various Machine learning models
- 4. Select suitable Machine learning models for a given problem
- 5. Build Neural Network based models
- 6. Apply Dimensionality Reduction techniques

Module No.	Unit No.	Contents	Hrs.
1		Introduction to Machine Learning	6
	1.1	Introduction to Machine Learning, Issues in Machine Learning, Application of	
		Machine Learning, Steps of developing a Machine Learning Application.	
	1.2	Supervised and Unsupervised Learning: Concepts of Classification, Clustering	
		and prediction, Training, Testing and validation dataset, cross validation,	
		overfitting and under fitting of model	
	1.3	Performance Measures: Measuring Quality of model- Confusion Matrix,	
		Accuracy, Recall, Precision, Specificity, F1 Score, RMSE	

2		Mathematical Foundation for ML	5
	2.1	System of Linear equations, Norms, Inner products, Length of Vector, Distance	
		between vectors, Orthogonal vectors	
	2.2	Symmetric Positive Definite Matrices, Determinant, Trace, Eigenvalues and	
		vectors, Orthogonal Projections, Diagonalization, SVD and its applications.	
3		Liner models	7
	3.1	The least-squares method, Multivariate Linear Regression, Regularised	
		Regression, Using Least-Squares Regression for classification	
	3.2	Support Vector Machines	
4		Clustering	4
	4.1	Hebbian Learning rule	
	4.2	Expectation -Maximization algorithm for clustering	
5		Classification models	12
	5.1	Introduction, Fundamental concept, Evolution of Neural Networks, Biological	
		Neuron, Artificial Neural Networks, NN architecture, McCulloch-Pitts Model.	
		Designing a simple network, Non-separable patterns, Perceptron model with	
		Bias. Activation functions, Binary, Bipolar, continuous, Ramp. Limitations of	
		Perceptron.	
	5.2	Perceptron Learning Rule. Delta Learning Rule (LMS-Widrow Hoff), Multi-	
		layer perceptron network. Adjusting weights of hidden layers. Error back	
		propagation algorithm.	
	5.3	Logistic regression	
6		Dimensionality Reduction	5
	6.1	Curse of Dimensionality.	
	6.2	Feature Selection and Feature Extraction	
	6.3	Dimensionality Reduction Techniques, Principal Component Analysis.	1
		Total	39

- 1. Nathalie Japkowicz & Mohak Shah, "Evaluating Learning Algorithms: A Classification Perspective", Cambridge.
- 2. Marc Peter Deisenroth, Aldo Faisal, Cheng Soon Ong, "Mathematics for machine learning"
- 3. Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.
- 4. Ethem Alpaydın, "Introduction to Machine Learning", MIT Press
- 5. Peter Flach, "Machine Learning", Cambridge University Press

Reference Books:

- 1. Tom M. Mitchell, "Machine Learning", McGraw Hill
- 2. Kevin P. Murphy, "Machine Learning A Probabilistic Perspective", MIT Press
- 3. Stephen Marsland, "Machine Learning an Algorithmic Perspective", CRC Press
- 4. Shai Shalev-Shwartz, Shai Ben-David, "Understanding Machine Learning", Cambridge University Press
- 5. Peter Harrington, "Machine Learning in Action", DreamTech Press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject		Te	aching Sch	eme	Credits Assigned			
Code	Subject Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC	Industrial	03			0.2			03
DO601	Automation	03			03			03

	Subject Name	Examination Scheme								
Subject Code			Theory Marks							
		Internal assessment			End	Exam	Term	Prac	Oral	Total
		Test	Test	Avg of Test 1	Sem. Exam	duratio n Hours	Work	tical		
		1	2	and Test 2	Lxam	II Hours				
ECC DO601	Industrial Automation	20	20	20	80	03	-			100

Course Pre-requisite:

Knowledge of Basic Electrical Engineering,

Basic Electronics,

Digital Electronics,

Electronics Measurement and Instruments

Course Objectives:

- 1. To measure industrial parameters like temperature, pressure, force, displacement, speed, flow, level, humidity and pH.
- 2. To explain fundamentals of process control
- 3. To list basic devices used in automated systems
- 4. To use programmable logic controllers for industrial automation
- 5. To draw block diagram of supervisory control and data acquisition (SCADA) and integrate it with PLC systems
- 6. To use Internet of Things for Industrial Automation
- 7. To make use of robots for industrial applications

Course Outcomes:

- 1. Understand and draw block diagram of industrial automation and control system
- 2. Understand various automation components and systems
- 3. Explain architecture of industrial automation system
- 4. Demonstrate working of PLC and SCADA and interface the same.
- 5. Demonstrate the use of IOT and robotics in Automation
- 6. Distinguish between the usage of custom embedded systems, FPGAs and PLCs

Module No.	Unit No.	Contents	Hrs.
1		Introduction	06
	1.1	Automation overview, Requirement of automation systems,	
	1.2	Architecture of Industrial Automation system, Parameters of Industrial Revolution 4.0	
	1.3	Introduction of PLC and supervisory control and data acquisition (SCADA)	
	1.4	Industrial bus systems: Mod bus &Profi-bus & Ether CAT	
2		Automation components	07
	2.1	Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement.	
	2.2	Actuators, process control valves, Introduction of DC and AC servo drives for motion control. Use of Contactors, Isolators, MCB, MCCB, Earth Breakers etc	
3		Computer aided measurement and control systems	08
	3.1	Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking. Industrial communication systems, Data transfer techniques	S
	3.2	Computer aided process control software, Computer based data acquisition system	1
	3.3	Internet of things (IoT) for plant automation	
4		Programmable logic controllers	06
	4.1	Programmable controllers, Programmable logic controllers, Analog digital input and output modules	t
	4.2	PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking	1
	4.3	PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.	
5		Distributed Control System	06
	5.1	Overview of DCS, DCS software configuration,]
	5.2	DCS communication, DCS Supervisory Computer Tasks,]
	5.3	DCS integration with PLC and Computers, Features of DCS, Advantages of DCS	f
6		Overview of Industrial automation using robots	06
	6.1	Basic construction and configuration of robot Pick and place robot	
	6.2	Welding robot.	
	6.3	Robots in the medical field	
		Total	39

- 1. S. K. Singh, "Industrial Instrumentation and Control", The McGraw Hill Companies
- 2. C.D. Johnson, "Process Control Instrumentation Technology", PHI
- 3. E. Andrew Parr, "Industrial control handbook", Newnem publication

Reference Books:

- 1. Garry Dunning, Introduction to Programmable logic controller, Delmar Thomson Learning,
- 2. Norman A. Anderson, Instrumentation and Process measurements and Control 2nd Edition. CRC Press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Те	eaching Sche	eme		Credits A	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC DO601	Digital Signal Processing	03			03			03

	Subject Name	Examination Scheme									
Subject Code			Theory Marks								
		Internal assessment			End Exam Sem. duratio		Term Work	Prac tical	Oral	Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	n Hours					
ECC DO601	Digital Signal Processing	20	20	20	80	03				100	

Prerequisite Courses:

Engineering Mathematics - III

Course Objectives:

- 1. To make conversant with the fundamentals of digital signal processing
- 2. To familiarise with the transforms used in Digital Signal Processing
- 3. To familiarise with the design techniques and performance analysis of digital filters
- 4. To introduce digital signal processors and applications

Course Outcomes:

- 1. Apply the concept of DT Signal and DT Systems.
- 2. Classify and analyse discrete time signals and systems
- 3. Implement Digital Signal Transform techniques DTFT, DFT and FFT.
- 4. Design FIR and IIR digital filters to meet arbitrary specifications and Develop algorithms for implementation
- 5. Use signal processing techniques and digital signal processors in various applications

Module No.	Unit No.	Contents	Hrs.
1		Discrete-Time Signal and Discrete-Time Systems	08
		Introduction to Digital Signal Processing, Sampling and Reconstruction, Standard DT Signals, Concept of Digital Frequency, Representation of DT signal using Standard DT Signals, Signal Manipulations-shifting, reversal, scaling, addition, multiplication.	
		Classification of Discrete-Time Signals, Classification of Discrete-Systems, LTI system, Impulse Response.	

	1.3	Linear Convolution, Circular Convolution- Emphasis on graphical method, linear	
		convolution using Circular Convolution. Software simulation - Impulse Response,	
		Step Response, convolution, Correlation.	
2		Frequency Domain Analysis using DTFT and Z Transform	07
	2.1	Introduction to DTFT. Properties of DTFT.	
	2.2	Z transform - definition, properties of unilateral and bilateral Z Transform, Z	
		transform of standard signals, ROC, poles and zeros of transfer function, Inverse Z	
		transform	
	2.3	Analysis and characterization of LTI system using Z transform, impulse and step	
		response, causality, stability, stability of causal system	
3		Discrete Fourier Transform and Fast Fourier Transform	06
	3.1	DFT, Relation between DFT and DTFT, IDFT	
	3.2	Properties of DFT, circular convolution of sequences using DFT	
	3.3	Fast Fourier transforms (FFT), Radix-2 decimation in time and decimation in	
		frequency FFT algorithms, inverse FFT	
4		IIR Digital Filters	09
	4.1	Comparison of IIR and FIR filters, Types of IIR Filters, Analog filter	
		approximations: Butterworth, Chebyshev I and II	
	4.2	Mapping of S-plane to Z-plane, impulse invariance method, bilinear transformation	
		method, Design of IIR digital filters from analog filters with examples, Software	
		simulation – Design of IIR Filters	
	4.3	Analog and digital frequency transformations	
5		FIR Digital Filters	05
	5.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed	
		Phase and Linear Phase Filters Frequency response, location of the zero of linear	
		phase FIR filters	
	5.2	Design of FIR filters using window techniques -Rectangular, Hamming, Hanning,	
		Blackman, Bartlett, Software simulation – Design of FIR Filters.	
6		DSP Processors and Applications	04
	6.1	General purpose digital signal processors, DSP processor architecture, Selecting	
		digital signal processors, Special purpose DSP hardware	
	6.2	Applications of DSP: Radar Signal Processing and Speech Processing	
		Total	39

- 1. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education Second edition
- 2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015
- 3. S Salivahanan, A Vallavaraj, C Gnanapriya. "Digital Signal Processing" TMH, 2007

Reference Books:

- 1. ProakisJ., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education
- 2. Sanjit K. Mitra, "Digital Signal Processing A Computer Based Approach", edition 4e McGraw Hill Education (India) Private Limited
- 3. Oppenheim A, Schafer R, Buck J., "Discrete Time Signal Processing", 3rd Edition, Pearson Education.

- 4. B. Venkata Ramani and, M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2nd edition 2017.
- 5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2015.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Subject	Subject	Te	eaching Sche	eme	Credits Assigned				
Code	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ECC DO601	Electronic Product Design	03			03			03	

Subject Code	Subject Name	Examination Scheme								
		Theory Marks								
		Internal assessment			End	Exam	Term Work	Pract ical	Oral	Total
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem. Exam	duration Hours	WOIK	icai		
ECC DO601	Electronic Product Design	20	20	20	80	03				100

Course Pre-requisite: Electronic Circuits, Controls and Instrumentation

Course Objectives:

- 1. To understand the customer need-based product development process
- 2. To understand the Lab to market challenges in the product design and development
- 3. To understand the electronic product development stages
- 4. To understand the development consideration of hardware and software design and various testing method
- 5. To gain knowledge about various processes, safety & qualification certifications & the importance of documentation

Course Outcomes:

After successful completion of the course students will be able to:

- 1.Importance of customer-centric approach in the electronic product development process
- 2. Electronic product development stages and challenges
- 3. Implement learning for meeting a prototype as per industry standard/specification
- 4. Demonstrate problem-solving & troubleshooting skills in electronic product design
- 5. Prepare the relevant set of design documentation & present it as a case study

Module No.	Unit No.	Contents	Hrs.						
1		CUSTOMER CENTRIC APPROACH FOR PRODUCT DEVELOPMENT	08						
	1.1	Prototype, MVP, commercial product and related terminologies							
	1.2	sics of customer discovery process, customer and value proposition							
	1.3	Understand product market fit, product failure, internal challenges for product							
		development.							
	1.4	Identify the available market place for the product.							
2		PRODUCT DEVELOPMENT CHALLENGES	06						
	2.1	Idea segmentation, product features, lab to market journey, Product development							

		stages, product development challenges.							
	2.2	Electronic product classification and certifications requirement. Indian and							
		international standard for product compliance.							
3		HARDWARE DESIGN & TESTING METHODS	07						
	3.1	Design process, identifying the requirements, formulating specifications, design							
		specifications, system partitioning, functional design, architectural design,							
	3.2	Component selection criteria							
	3.3	Functional model v/s architectural model, prototyping, performance & efficiency							
		measures, formulating a test plan, writing all the specifications, test procedures &							
		test cases, design reviews, module debug & testing – black box testing, white box							
		testing, grey box testing							
4		SOFTWARE DESIGN & TESTING METHODS	06						
	4.1	Types of software, the waterfall model of software development, models, metrics							
		& software limitations, risk abatement & failure prevention							
	4.2 Software bugs & testing								
	4.3	Good programming practice, user interface, embedded & real-time software							
5		PRODUCT DEBUGGING & TESTING	06						
	5.1	Steps of debugging, the techniques for troubleshooting							
	5.2	Characterization, electromechanical components, passive components, active							
		components, active devices, operational amplifier, analog-to-digital conversion,							
		digital components,							
	5.3	Inspection & testing of components, process of simulation, prototyping & testing,							
		integration, validation & verification, EMI & EMC issues	0.5						
6		THE DOCUMENTATION PROCESS	06						
		Definition, needs & types of documentation, records, accountability & liability,							
		audience, steps in preparation, presentation & preservation of documents							
		Methods of documentation, visual techniques, layout of documentation, bills of							
		materials, manuals – instructional or operating manual, service and maintenance							
		manual,							
Fault finding tree, software documentation practices									
		Total	39						

Text Books:

- 1. Phillip Kotler, Kevin Lane keller, Abraham Koshi, Mithieshwar Zha, "Marketing management" 13th edition
- 2. Alexander Osterwalder & Yves Pigneur, "Business model generation"
- 3. Alex Osterwalder, Yves Pigneur, Greg Bernarda, Alan Smith, "Value Proposition design"
- 4. G. C. Loveday, "Electronic Testing & Fault Diagnosis", 4th edition, A. H. Wheeler Publishing
- 5. James K. Peckol, "Embedded Systems A Contemporary Design Tool", 1st edition, Wiley Publication
- 6. J. C. Whitaker, "The Electronics Handbook", CRC Press

Reference Books:

- 1. GIFF CONSTABLE, Talking to humans
- 2. R. G. Kaduskar & V. B. Baru, Electronic Product Design, 3rd edition, Wiley India
- 3. Kim Fowler, Electronic Instrument Design, 2nd edition, Oxford University Press
- 4. Robert J. Herrick, PCB Design Techniques for EMC Compliance, 2nd edition, IEEE Press

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the module

Subject Code	Subject Name		Credits Assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 601	Embedded Systems Lab	-	02	-		01	1	01

Subject Code	Subject Name	Examination Scheme									
		Theory Marks					Term	Practical	Oral	Total	
		Internal assessment			End	Exam	Work	/Oral			
		Test 1	Test 2	Avg of Test 1 and Test 2	Sem Exam	duration Hours					
ECL 601	Embedded Systems Lab						25	25		50	

Prerequisite:

- 1. Basics of Microcontroller programming
- 2. C programming

Laboratory Outcomes:

After successful completion of the course students will be able to:

- 1. Interface various sensors and actuators to embedded cores.
- 2. Write code using RTOS for multi-tasking Embedded systems
- 3. Design applications using different embedded cores

Term Work:

At least 10 experiments covering entire syllabus of **Embedded Systems and RTOS** (**ECC 601**) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Ī	Sr.	Experiment Name
	No.	
	1	Interfacing of LEDs /switches with any embedded core. (8051/ARM/STM32, etc)
	2	Interfacing of Temperature sensor with any embedded core. (8051/ARM/STM32, etc)

3	Interfacing of LCD/ Seven segment display with any embedded core. (8051/ARM/STM32,etc)
4	Interfacing of Ultrasonic/Humidity sensor with any embedded core. (8051/ARM/STM32,etc)
5	Interfacing of a relay with any embedded core. (8051/ARM/STM32,etc)
6	Interfacing of a DC motor (speed and Direction control) with any embedded
	core.(8051/ARM/STM32,etc)
7	Interfacing of a stepper motor (to move by a particular angle) with any embedded
	core. (8051/ARM/STM32, etc)
8	Implement power management in any embedded core of your choice
9	Implement the I2C communication to connect to DS1307 RTC
10	Porting of FreeRTOS to Arduino/STM32.
11	Write a Program to Create Multiple Tasks and understand the Multitasking
	capabilities of RTOS(FreeRTOS).
12	Write a Program to illustrate the Queue Management Features of FreeRTOS.
13	Write a Program to illustrate the Event Management Features of FreeRTOS.
14	Write a Program to illustrate the use of Binary and Counting Semaphore for Task
	Synchronisation using FreeRTOS.
15	Build a Multitasking Real-Time Applications using the above IPC
	Mechanisms (Message Queue, EventGroup, Semaphores) with FreeRTOS on
	Arduino/STM32.
• Stud	ents must perform the experiments using Simulation as well as in Hardware.
• <i>Expe</i>	eriments must include a minimum of 3 experiments using FreeRTOS

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECL 602	Artificial Intelligence and Computer Networks Lab		02		-1	01		01

	Subject Name	Examination Scheme									
Subject Code				Theory Mai	Term	Practical/	Oral	Total			
		Internal assessment			End Sem.	**		Oral		Total	
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours					
ECL 602	Artificial Intelligence and Computer Networks Lab						25	25		50	

Laboratory Outcomes (LO)

At the end of the course, students will be able to;

- 1. Identify suitable Agent Architecture for a given real world AI problem
- 2. Implement simple programs using Prolog.
- 3. Implement various search techniques for a Problem-Solving Agent.
- 4. Represent natural language description as statements in Logic and apply inference rules to it.
- 5. Construct a Bayesian Belief Network for a given problem and draw probabilistic inferences from it.
- 6. Design and implement various network applications such as data transmission between client and server, file transfer etc. using Socket Programming
- 7. Determine how to assign the IP addresses and configure a network on different operating environments.
- 8. Configure the networks using IP addressing and subnetting / supernetting schemes using various OS commands

Term Work:

At least 10 experiments covering entire syllabus of Artificial Intelligence and Computer Networks (50 % Artificial intelligence and the remaining 50% Computer Networks experiments) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name							
	Artificial Intelligence							
1	Provide the PEAS description and TASK Environment for a given AI problem.							
	Identify suitable Agent Architecture for the problem							
2	Write simple programs using PROLOG as an AI programming Language							
3	Implement any one of the Uninformed search techniques							
4	Implement any one of the Informed search techniques							
	E.g. A-Star algorithm for 8 puzzle problem							
5	Implement adversarial search using min-max algorithm.							
6	Write a program to implement genetic algorithm.							
7	Prove the goal sentence from the following set of statements in FOPL by applying							
	forward, backward and resolution inference algorithms.							
8	Create a Bayesian Network for the given Problem Statement and draw inferences from							
	it. (You can use any Belief and Decision Networks Tool for modeling Bayesian							
	Networks)							
	Computer Networks							
1	Use a tool (Eg. NS2) to implement a specific Network topology with respect to the							
	given number of nodes and physical configuration and do: Graphical simulation of naturally with Pouting Protocols and traffic consideration							
	 Graphical simulation of network with Routing Protocols and traffic consideration (TCP, UDP) 							
	 Analysis of network performance for quality parameters such as 							
	packet-delivery-ratio, delay, and throughput							
2	Socket programming using TCP and/or UDP							
3	Use basic networking commands in Linux (ping, tracert, nslookup, netstat, ARP, RARP,							
	ip, ifconfig, dig, route, etc) and set up a network environment with multiple IP addresses							
	and configuration of ARP tables.							
	Set up a network environment in Windows platform also							
4	Working with routing in Linux/windows:							
	View the current routing table							
	Add and delete routes							
	Change default gateway							
-	Perform IP Tables for IP forwarding							
5	Set up and configuration of firewalls in Linux/windows (Use IPTables)							
6	Packet Sniffing using Wireshark							

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	7	Teaching S	Scheme		Credits Assigned				
ECT (02	Data Warehousing	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ECL603	and Mining Lab		02			01		01		

Subject Code	Subject Name	Examinati on Scheme								
		Theory Marks					Term	Practi	Oral	Total
		Internal assessment			End Sem	Exam duration	Work	cal/ Oral		
		Test 1	Test 2	Avg of Test 1 and Test 2	Exam	Hours		Oran		
ECL603	Data						25	25		50
	Warehousing and Mining Lab					-	25	25	-	50

Laboratory Outcomes (LOs):

At the end of the course the student should be able to:

- 1. Design data warehouse using dimensional modelling
- 2. Perform different OLAP operations
- 3. Differentiate among different data mining techniques and decide the applicability for each.
- 4. Demonstrate classifications, prediction, etc. on datasets using open source tools
- 5. Perform Market basket analysis in real world data using data mining tools
- 6. Appreciate and visualize clustering techniques

Term Work:

At least 10 experiments covering entire syllabus of **Data Warehousing and Mining** should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments

Sr. No.	Experiment Name
1	One case study on building Data warehouse/Data Mart
	Write Detailed Problem statement and design dimensional modelling
	(creation of star and snowflake schema)
	Implementation of all dimension table and fact table

2	Implementation of OLAP operations: Slice, Dice, Rollup, Drilldown and Pivot
	for the above problem statement (experiment 1)
3	Implementation of Classification algorithm(Decision Tree/Naive Bayes)
4	Implementation of Clustering algorithm(K-means/Agglomerative)
5	Implementation of Association Rule Mining algorithm (Apriori)
6	Implementation of prediction algorithm (Linear regression)
7	Perform data Pre-processing task and Demonstrate Classification algorithm on
	data sets using data mining tool (WEKA, R tool, XL Miner, Orange etc.)
8	Perform data Pre-processing task and Demonstrate Clustering algorithm on
	data sets using data mining tool (WEKA, R tool, XL Miner, Orange etc.).
9	Perform data Pre-processing task and Demonstrate Association algorithm on
	data sets using data mining tool (WEKA, R tool, XL Miner, Orange etc.).
10	Demo on any cloud-based data warehousing process (an end to end process)
	which gives a holistic view of Data Warehouse

Text Books:

- 1. Oracle database SQL reference
- 2. Oracle warehouse builder
- 3. Weka tutorial
- 4. Python tutorial for classification and clustering
- 5. Tutorial on orange "https://orangedatamining.com/getting-started/"

Data sets available for download

- 1. Datasets for data mining "http://www.inf.ed.ac.uk/teaching/courses/dme/html/datasets0405.html"
- 2. Datasets for data mining "https://www.kdnuggets.com/datasets/index.html"
- 3. Datasets from UCI repository
- 4. Kaggle datasets

Web References

- 1. https://www.coursera.org/specializations/data-mining
- 2. https://www.udemy.com/course/data-mining-python/
- 3. https://onlinecourses.nptel.ac.in/noc21_cs06/preview

Note: Suggested List of Experiments is indicative. However, flexibilities lie with individual course instructor to design and introduce new, innovative and challenging experiments, (limited to maximum 30% variation to the suggested list) from within the curriculum, so that, the fundamentals and applications can be explored to give greater clarity to the students and they can be motivated to think differently.

Subject Code	Subject Name	Te	aching Schem	e	Credits Assigned					
		Theory	Practical	Tutor ial	Theory	Practical	Tutorial	Total		
ECL604	Skill base Lab: Linux Server Administration Lab		2*+ 2 Hours (Batch-wise)			02		02		
*Theory cla	*Theory class to be conducted for full class									

	Subject Name	Examinati on Scheme								
Subject Code		Theory Marks					Term	Practi	Oral	Total
		Internal assessment			End	Exam	Work	cal/ Oral		
		Test	Test	Avg of Test 1	Sem Exam	duration Hours		Orai		
		1	2	and Test 2	LAGIII					
ECL604	Skill base Lab: Linux Server Administration Lab						50			50

Course Pre-requisites: Familiarity to computer systems, Computer Networks

Course Objectives:

- 1. To introduce the concept of Open-Source Software.
- 2. To impart knowledge and skills on various practical and theoretical aspects of Linux operating system (OS) basics and Linux OS based server configuration, management and administration.
- 3. To provide a comprehensive introduction to SHELL programming, services and utilities.
- 4. To Introduce the Linux system Security and Virtualization technologies concepts like Hypervisor, emulation, and application

Course Outcomes:

At the end of the course the student should be able to:

- 1. Understand the concept of Open-source technology and basics of Linux operating system
- 2. Learn various Linux Command Line administration tasks and perform file, user, group and process management tasks
- 3. Learn various Linux Command Line utilities to perform storage and network management tasks
- 4. Learn Linux Server administration tasks and configure servers for front and backend services.
- 5. Analyse a given problem and apply requisite facets of SHELL programming in order to devise a SHELL script to solve the problem
- 6. Apply security measures to protect the operating environment and explain virtualization and their role in elastic computing.

Module No		Topics	Hours
1		Introduction to Open-Source Software	
	1.1	Need of Open Sources, Advantages and applications of Open sources, FOSS – FOSS usage, Free Software Movement, Open-Source Software Development Model, comparison with close source / Proprietary software, widely used open-source software license: Apache License 2.0, BSD license, GNU General Public License, MIT License, Mozilla Public License 2.0	06
	1.2	Installation of Linux (Redhat-CentOS-Fedora-Ubuntu): Linux Architecture, Kernel and shells, Boot Process, bootloader, understanding FHS of Linux, Understanding the different types of run-levels, understanding different types of shutdown commands,	
2		Open-Source Operating System: System Administration Task	
	2.1	Basic Command Line: Working with the Bash Shell, Getting the Best of Bash, Useful Bash Key Sequences, Working with Bash History, Performing Basic File System Management Tasks, Working with Files and Directories, Piping and Redirection, Finding Files, Working with Links	
	2.2	Process management Task: Performing Job Management Tasks, System and Process Monitoring and Management, Managing Process Niceness, Scheduling Jobs using CRON, Creating Backups,	08
	2.3	Users, Groups, and Permissions: Managing Users and Groups, Commands for User Management, Managing Passwords, Modifying and Deleting User Accounts, Configuration Files, Creating Groups, Managing Permissions, the Role of Ownership, Basic Permissions: Read, Write, and Execute, Advanced Permissions, Working with Access Control Lists, Setting Default Permissions with umask, Working with Attributes	
3		Open-Source Operating System: Storage and Network Management	08
	3.1	Storage Configuration and Management: Understanding Partitions and Logical Volumes, Creating Partitions, File Systems Overview, Creating File Systems, Mounting and Unmounting File systems, Mounting File Systems Automatically Through fstab, Working with Logical Volumes, Creating Logical Volumes, Resizing Logical Volumes, Creating Swap Space, Working with Encrypted Volumes	
	3.2	Network Management: Understanding Network Manager, Network Manager Configuration Files, Network Service Scripts, Networking from the Command Line, Troubleshooting Networking, Setting Up IPv4 and IPv6, Configuring SSH, Enabling the SSH Server, Using the SSH Client, Using PuTTY on Windows Machines, Configuring Key- Based SSH Authentication, Using Graphical Applications with SSH, Using SSH Port Forwarding, Configuring VNC Server Access	
4		Open-Source Operating System: Server Administration Task	08
	4.1	Configuring Server for File Sharing: What is NFS? Advantages and Disadvantages of NFS, Configuring NFS4, Setting Up NFSv4, Mounting an NFS Share, Making NFS Mounts Persistent, Configuring Automount, Configuring Samba, Setting Up a Samba File Server, Samba Advanced Authentication Options, Accessing Samba Shares, Understanding the features and advantages of FTP server, Configuring FTP server and FTP clients, Understanding FTP Basic Commands	

	4.2	Configuring LAMP stack: Configuring the Apache Web Server, creating a Basic Website, Understanding the Apache Configuration Files, Apache Log Files, Working with Virtual Hosts, Securing the Web Server with TLS Certificates, Setting Up MySQL and PhpMyAdmin.	
5		Bash Shell Scripting	10
	5.1	Introducing Bash Shell Scripting: Introduction to Shells, Executing the Script, Working with Variables and Input, Understanding Variables, Working with Script Arguments, reading user input, Using Command Substitution, Substitution Operators, Changing Variable Content with Pattern Matching, Performing Calculations, Using Control Structures, using ifthenelse, using case, using while, using until, using for.	
	5.2	Advanced Shell Scripting: Using I/O Redirections, Functions, Arrays, Process substitution, Commands Chaining, AWK, GAWK, SED, CUT and REGEX. Working with web using shell script: Downloading web page as formatted text file and parsing for data, working CURL etc.	
6		Open-Source Operating System: Advanced security & Virtualization	08
	6.1	SELinux and FirewallD:SELinux Overview, SELinux Tools, SELinux Contexts, SELinux Booleans, Use SELinux port labeling to allow services to use non-standard ports, Diagnose and address SELinux policy violations, Configure FirewallD, Understand Firewalld Components, Setting Default Firewalld Zone, Creating Own Services in Firewalld, Assigning Services to Firewalld Zones, Adding Rich Rules for Network Range	
	6.2	Virtualization: Introduction to virtualization and its types, need of virtualization, Benefits of Virtualization, Virtualization Implementation, Kernel based Virtual Machines (KVM) and XE	

Text Books:

- 1. Linux: The Complete Reference, Sixth Edition by Richard Petersen, McGraw Hill Education; 6th edition (1 July 2017)
- 2. Linux Command Line and Shell Scripting Bible by Richard Blum Wiley; 3rd edition (17 March 2015)
- 3. Red hat Linux Networking and System Administration, by Terry Collings and Kurt Wall, Wiley 3rd edition 2005

Reference Books:

- 1. Linux Administration: A Beginner's Guide by Wale Soyinka, McGraw-Hill Education; 8th edition (28 April 2020)
- 2. Red Hat Enterprise Linux 6 Administration, Real World Skills for Red Hat Administrators by Sander van Vugt, John Wiley and Sons 2013
- 3. Rhcsa Red Hat Enterprise Linux 8: Training and Exam Preparation Guide, Asghar Ghori, Endeavor Technologies (10 January 2020)

Software Resources:

- 1. https://www.virtualbox.org/wiki/Downloads
- 2. https://getfedora.org/
- 3. https://www.centos.org/download/
- 4. https://ubuntu.com/download/desktop
- 5. https://developers.redhat.com/products/rhel/download

Online Resources: (browser-based terminals)

- 1. https://distrotest.net/
- 2. https://bellard.org/jslinux/
- 3. http://www.webminal.org/terminal/
- 4. https://www.tutorialspoint.com/unix_terminal_online.php

Online Resources: (Study Resources)

- 1. https://training.linuxfoundation.org/training/introduction-to-linux/
- 2. https://www.netacad.com/courses/os-it/ndg-linux-unhatched
- 3. https://www.netacad.com/courses/os-it/ndg-linux-essentials
- 4. https://www.edx.org/course/fundamentals-of-red-hat-enterprise-linux
- 5. https://linuxhandbook.com/tag/bash-beginner/
- 6. https://www.learnshell.org/
- 7. https://itsfoss.com/shell-scripting-resources/

Suggested List of Experiments

Sr.	Experiment Title
No	
1	Installation of Red HAT/Centos/Fedora Linux operating system.
	a. Partitioning drives
	b. Configuring boot loader (GRUB/LILO)
	c. Updating and upgrading the system
	d. Shutting down and reboot
2	Learning and executing Linux commands for
	a. Interacting with BASH shell and built-in shell variables
	b. Navigation
	c. File and directory management
	d. Working with links
	e. Searching files
3	Learning and executing Linux commands for Process management
	tasks like
	a. Executing a process
	b. Getting process info
	c. Killing a process
	d. Changing process attributes
	e. Managing foreground and background processes
	f. Scheduling automated jobs using CRON jobs
4	Learning and executing Linux commands for managing Users,
	Groups, and Permissions

	a. Creating, modifying and deleting users
	b. Creating, modifying and deleting groups
	c. Managing file permissions, attributes and ownerships
	d. Setting Default Permissions with umask
	e. Setting up access control list for files and directories
5	Learning and executing Linux commands for managing Storage
	drives in Linux environment
	a. Create partitions
	b. Install file system
	c. Mount and unmount partitions manually from CLI
	d. Automated mounting using fstab
	e. Encrypt volumes
6	Learning and executing Linux commands for managing
	networking in Linux environment
	a. Enable networking services from command line
	b. Configure IP and other network settings from command line.
	c. Configure IP and other network settings from configuration
	files.
	d. Configure SSH based services for CLI and GUI access on
	remote machines.
7	Install and configure an NFS server and mount NFS shares on
	Linux Environment
8	Install and configure files sharing services using FTP server
9	Install and configure Samba file server and share files across local
	network.
10	Install and configure a LAMP stack and deploy a full stack web
	application on it with SSL/TLS security.
11	Shell Scripting:
	a. Write a shell script program to display list of user currently
	logged in.
	b. Write a shell script program to display "HELLO WORLD".
	c. Write a shell script program to develop a scientific calculator.
	d. Write a shell Script program to check whether the given number
	is even or odd.
	e. Shell script Program to search whether element is present is in the
	list or no
	f. Shell script program to check whether given file is a directory or
	not.
	g. Shell script program to count number of files in a Directory.
	h. Shell script program to copy contents of one file to another.
	i. Create directory, write contents on that and Copy to a suitable
	location in your home directory.
	j. Use a pipeline and command substitution to set the length of a
	line in file to a variable.
	k. Write a program using sed command to print duplicated lines of

	Input.					
	l. Write a grep/egrep script to find the number of words character,					
	words and lines in a file.					
	m. Write an awk script to develop a Fibonacci series.					
	n. Write an awk script to display the pattern of given string or number.					
	o. Write a shell script program to check variable attributes of file and processes.					
	p. Write a shell script program to check and list attributes of processes.					
	q. Shell Script program to implement read, write, and execute permissions.					
	r. Shell Script program for changing process priority.					
12	Configuring security for the Linux Server environment using					
	SELinux and FirewallD					
13	Install and set up KVM to run isolated instances of other operating					
	systems inside a Linux host system					

Subject Code	Subject Name	Credits Assigned
ECM601	Mini project – 2B	02

		Examination Scheme							
		Theory Marks						Practical/	Total
								Oral	
Subject	Subject				End	Exam			
Code	Name	Inte	rnal Assess	sment	Sem	duration			
					Exam	Hours			
		Test 1	Test 2	Avg. of Test					
				1 and					
				Test 2					
ECM601	Mini project – 2B						25	25	50

Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Outcomes:

Learner will be able to;

- 1. Identify problems based on societal /research needs.
- 2. Apply knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/experimental/simulations.
- 5. Analyze the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices.
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life-long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Major focus of Mini-project 2 shall be towards exploration and applicability of knowledge acquired in the domain areas of DLOs available for the year.
- Student shall give special consideration to identify and provide solutions to the burning societal and/or environmental issues which may affect the mankind to larger extend.

• Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.

A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.

- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case-to-case basis.

Guidelines for Assessment of Mini Project:

The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester. In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

Distribution of Term work marks for both semesters shall be as below;

Marks awarded by guide/supervisor based on logbook: 10
Marks awarded by review committee : 10
Quality of Project report : 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

In first semester entire theoretical solution shall be ready, including components/system selection

and cost analysis. Two reviews will be conducted based on presentation given by students group.

- First on identification and finalization of problem
- Second on proposed solution for the problem.

In **second semester** expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.

- First review shall base on readiness of building working prototype.
- Second review shall be based on poster presentation-cum-demonstration of working model in last month of the said semester.

Half-year project:

In this case students' group shall complete project in all aspects, in a semester, including;

- o Identification of need/problem
- o Proposed acceptable solution for the identified problem
- o Procurement of components/systems, if any,
- o Building a working prototype and testing

The group shall be evaluated twice during the semester by review committee, mainly look for the progress as;

- First review focus shall be towards identification & selection of problem and probable solution proposal.
- Second review shall be for implementation and testing of solution. (Innovative/out of box solution)

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria:

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Innovativeness and out of box thinking
- 6. Cost effectiveness and Societal impact
- 7. Functional working model as per stated requirements
- 8. Effective use of skillsets acquired through curriculum including DLOs
- 9. Effective use of standard engineering practices & norms
- 10. Contribution of an individual as team member/Leader
- 11. Feasibility to deploy the solution on large scale
- 12. Clarity in written and oral communication

In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini-project.

In case of **half year project** all criteria's in generic may be considered for performance evaluation of students in mini-project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

Report should be prepared as per the guidelines issued by the University of Mumbai. Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organizations, having experience of more than five years approved by head of the Institute.

Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed by team of external & internal examiner at the end of semester/year. Performance shall be evaluated based on;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Implementation of working model
- 5. Effective use of diversified skill-set
- 6. Effective use of standard engineering practices & norms
- 7. Contribution of an individuals as a member/Leader
- 8. Clarity in written and oral communication